We study the symmetric powers of four algebras: -oscillator algebra, -Weyl algebra, -Weyl algebra and . We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.
@article{AMBP_2004__11_2_187_0, author = {D\'\i az, Rafael and Pariguan, Eddy}, title = {Symmetric quantum Weyl algebras}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {11}, year = {2004}, pages = {187-203}, doi = {10.5802/ambp.192}, zbl = {02205936}, mrnumber = {2109607}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2004__11_2_187_0} }
Díaz, Rafael; Pariguan, Eddy. Symmetric quantum Weyl algebras. Annales mathématiques Blaise Pascal, Tome 11 (2004) pp. 187-203. doi : 10.5802/ambp.192. http://gdmltest.u-ga.fr/item/AMBP_2004__11_2_187_0/
[1] Fixed rings of the Weyl algebra , Journal of algebra, Tome 130 (1990), pp. 83-96 | Article | MR 1045737 | Zbl 0695.16022
[2] Quantum groups, Springer-Velarg, New York (1995) | MR 1321145 | Zbl 0808.17003
[3] Noncommutative Solitons on Orbifolds (2001) (hep-th/0101199)
[4] Deformation Quantization of Poisson Manifolds I (1997) (math. q-alg/97090401)
[5] Algebras of functions on Quantum groups. Part I, Mathematical surveys and monographs, Tome 56 (1996) | Zbl 0923.17017
[6] Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math, Tome 147 (2002) no. 2, pp. 243-348 | Article | MR 1881922 | Zbl 1061.16032
[7] On the foundations of combinatorial theory. VII: Symmetric functions through the theory of distribution and occupancy, Gian-Carlo Rota on Combinatorics. Introductory papers and commentaries (1995), pp. 402-422
[8] Quantum symmetric functions (2003) (math.QA/0312494)
[9] Super, quantum and non-commutative species (2004) (Work in progress)
[10] Noncommutative Solitons, J. High Energy Phys. JHEP, Tome 05-020 (2000) | MR 1768736 | Zbl 0989.81612
[11] Phys.Lett. A 196 (1994) (Number 29, Volume 126)
[12] Infinite dimensional Lie algebras., Cambridge University Press, New York (1990) | MR 1104219 | Zbl 0716.17022
[13] Quantum Calculus, Springer-Velarg, New York (2002) | MR 1865777 | Zbl 0986.05001