In this paper, we will introduce the concept of affine frame in wavelet analysis to the field of -adic number, hence provide new mathematic tools for application of -adic analysis.
@article{AMBP_2003__10_2_297_0, author = {Cui, Ming Gen and Yao, Huan Min and Liu, Huan Ping}, title = {The Affine Frame in $p$-adic Analysis}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {10}, year = {2003}, pages = {297-303}, doi = {10.5802/ambp.178}, zbl = {1066.42501}, mrnumber = {2031273}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2003__10_2_297_0} }
Cui, Ming Gen; Yao, Huan Min; Liu, Huan Ping. The Affine Frame in $p$-adic Analysis. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 297-303. doi : 10.5802/ambp.178. http://gdmltest.u-ga.fr/item/AMBP_2003__10_2_297_0/
[1] Note on the wavelet transform in the field of p-adic numbers, Appl. and Computational hormonic Analgsis, Tome 13 (2002), pp. 162-168 | Article | MR 1942750 | Zbl 1022.42025
[2] Painless nonorthogonal expansion, J. Math. Phys., Tome 27 (1986), pp. 1271-1283 | Article | MR 836025 | Zbl 0608.46014
[3] Continuous and discrete Wavelet transforms, SIAM Review, Tome 31 (1989), pp. 628-666 | Article | MR 1025485 | Zbl 0683.42031
[4] Mirror Principle I, Asian J. Math., Tome 4 (1997), pp. 729-763 | MR 1621573 | Zbl 0953.14026
[5] Wavelet theory as -adic spectral analysis, Izv. Russ. Akad. Nauk, Ser. Math., Tome 66 (2002), pp. 149-158 | MR 1918846 | Zbl 1016.42025
[6] p-adic analysis and Mathematical Physics, World Scientific, 38 -112 (1994) | MR 1288093 | Zbl 0812.46076