Product Theorems for Certain Summability Methods in Non-archimedean Fields
Natarajan, P.N.
Annales mathématiques Blaise Pascal, Tome 10 (2003), p. 261-267 / Harvested from Numdam

In this paper, K denotes a complete, non-trivially valued, non-archimedean field. Sequences and infinite matrices have entries in K. The main purpose of this paper is to prove some product theorems involving the methods M and (N,p n ) in such fields K.

Publié le : 2003-01-01
DOI : https://doi.org/10.5802/ambp.176
Classification:  40,  46
@article{AMBP_2003__10_2_261_0,
     author = {Natarajan, P.N.},
     title = {Product Theorems for Certain Summability Methods in Non-archimedean Fields},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     year = {2003},
     pages = {261-267},
     doi = {10.5802/ambp.176},
     zbl = {1049.40006},
     mrnumber = {2031271},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2003__10_2_261_0}
}
Natarajan, P.N. Product Theorems for Certain Summability Methods in Non-archimedean Fields. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 261-267. doi : 10.5802/ambp.176. http://gdmltest.u-ga.fr/item/AMBP_2003__10_2_261_0/

[1] Escassut, A. Analytic elements in p-adic Analysis, World Scientific Publishing Co. (1995) | MR 1370442 | Zbl 0933.30030

[2] Monna, A.F. Sur le théorème de Banach-Steinhaus, Indag. Math., Tome 25 (1963), pp.  121-131 | MR 151823 | Zbl 0121.32703

[3] Natarajan, P.N. Multiplication of series with terms in a non-archimedean field, Simon Stevin, Tome 52 (1978), pp.  157-160 | MR 524352 | Zbl 0393.40006

[4] Natarajan, P.N. On Nörlund method of summability in non-archimedean fields, J.Analysis, Tome 2 (1994), pp.  97-102 | MR 1281500 | Zbl 0807.40005

[5] Natarajan, P.N.; Srinivasan, V Silvermann-Toeplitz theorem for double sequences and series and its application to Nörlund means in non-archimedean fields, Ann.Math. Blaise Pascal, Tome 9 (2002), pp.  85-100 | Article | Numdam | MR 1914263 | Zbl 1009.40002

[6] Srinivasan, V.K. On certain summation processes in the p-adic field, Indag. Math., Tome 27 (1965), pp.  368-374 | MR 196334 | Zbl 0128.28004