In this paper, denotes a complete, non-trivially valued, non-archimedean field. Sequences and infinite matrices have entries in The main purpose of this paper is to prove some product theorems involving the methods and in such fields
@article{AMBP_2003__10_2_261_0, author = {Natarajan, P.N.}, title = {Product Theorems for Certain Summability Methods in Non-archimedean Fields}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {10}, year = {2003}, pages = {261-267}, doi = {10.5802/ambp.176}, zbl = {1049.40006}, mrnumber = {2031271}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2003__10_2_261_0} }
Natarajan, P.N. Product Theorems for Certain Summability Methods in Non-archimedean Fields. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 261-267. doi : 10.5802/ambp.176. http://gdmltest.u-ga.fr/item/AMBP_2003__10_2_261_0/
[1] Analytic elements in -adic Analysis, World Scientific Publishing Co. (1995) | MR 1370442 | Zbl 0933.30030
[2] Sur le théorème de Banach-Steinhaus, Indag. Math., Tome 25 (1963), pp. 121-131 | MR 151823 | Zbl 0121.32703
[3] Multiplication of series with terms in a non-archimedean field, Simon Stevin, Tome 52 (1978), pp. 157-160 | MR 524352 | Zbl 0393.40006
[4] On Nörlund method of summability in non-archimedean fields, J.Analysis, Tome 2 (1994), pp. 97-102 | MR 1281500 | Zbl 0807.40005
[5] Silvermann-Toeplitz theorem for double sequences and series and its application to Nörlund means in non-archimedean fields, Ann.Math. Blaise Pascal, Tome 9 (2002), pp. 85-100 | Article | Numdam | MR 1914263 | Zbl 1009.40002
[6] On certain summation processes in the -adic field, Indag. Math., Tome 27 (1965), pp. 368-374 | MR 196334 | Zbl 0128.28004