On Strong Going-Between, Going-Down, And Their Universalizations, II
Dobbs, David E. ; Picavet, Gabriel
Annales mathématiques Blaise Pascal, Tome 10 (2003), p. 245-260 / Harvested from Numdam

We consider analogies between the logically independent properties of strong going-between (SGB) and going-down (GD), as well as analogies between the universalizations of these properties. Transfer results are obtained for the (universally) SGB property relative to pullbacks and Nagata ring constructions. It is shown that if AB are domains such that A is an LFD universally going-down domain and B is algebraic over A, then the inclusion map A[X 1 ,,X n ]B[X 1 ,,X n ] satisfies GB for each n0. However, for any nonzero ring A and indeterminate X over A, the inclusion map AA[X] is not universally (S)GB.

@article{AMBP_2003__10_2_245_0,
     author = {Dobbs, David E. and Picavet, Gabriel},
     title = {On Strong Going-Between, Going-Down, And Their Universalizations, II},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     year = {2003},
     pages = {245-260},
     doi = {10.5802/ambp.175},
     zbl = {1071.13003},
     mrnumber = {2031270},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2003__10_2_245_0}
}
Dobbs, David E.; Picavet, Gabriel. On Strong Going-Between, Going-Down, And Their Universalizations, II. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 245-260. doi : 10.5802/ambp.175. http://gdmltest.u-ga.fr/item/AMBP_2003__10_2_245_0/

[1] Anderson, D. F.; Dobbs, D. E.; Fontana, M. On treed Nagata rings, J. Pure Appl. Algebra, Tome 61 (1989), pp. 107-122 | Article | MR 1025917 | Zbl 0691.13005

[2] Bourbaki, N. Commutative Algebra, Addison-Wesley, Reading (1972) | Zbl 0279.13001

[3] Bouvier, A.; Dobbs, D. E.; Fontana, M. Universally catenarian integral domains, Adv. in Math., Tome 72 (1988), pp. 211-238 | Article | MR 972761 | Zbl 0695.13014

[4] Dobbs, D. E. On going-down for simple overrings, II, Comm. Algebra, Tome 1 (1974), pp. 439-458 | Article | MR 364225 | Zbl 0285.13001

[5] Dobbs, D. E. Going-down rings with zero-divisors, Houston J. Math., Tome 23 (1997), pp. 1-12 | MR 1688682 | Zbl 0896.13006

[6] Dobbs, D. E.; Fontana, M. Universally going-down homomorphisms of commutative rings, J. Algebra, Tome 90 (1984), pp. 410-429 | Article | MR 760019 | Zbl 0544.13004

[7] Dobbs, D. E.; Fontana, M. Universally going-down integral domains, Arch. Math., Tome 42 (1984), pp. 426-429 | Article | MR 756695 | Zbl 0526.13007

[8] Dobbs, D. E.; Papick, I. J. On going-down for simple overrings, III, Proc. Amer. Math. Soc., Tome 54 (1976), pp. 35-38 | Article | MR 417153 | Zbl 0285.13002

[9] Dobbs, D. E.; Picavet, G. On strong going-between, going-down, and their universalizations, Rings, Modules, Algebras and Abelian Groups, Dekker, New York (to appear) | MR 2050708 | Zbl 1069.13008

[10] Fontana, M. Topologically defined classes of commutative rings, Ann. Mat. Pura Appl., Tome 123 (1980), pp. 331-355 | Article | MR 581935 | Zbl 0443.13001

[11] Fontana, M.; Huckaba, J. A.; Papick, I. J. Prüfer Domains, Dekker, New York (1997) | MR 1413297 | Zbl 0861.13006

[12] Gilmer, R. Multiplicative Ideal Theory, Dekker, New York (1972) | MR 427289 | Zbl 0248.13001

[13] Grothendieck, A.; Dieudonné, J. A. Eléments de Géométrie Algébrique, Springer-Verlag, Berlin (1971) | Zbl 0203.23301

[14] Hochster, M. Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., Tome 142 (1969), pp. 43-60 | Article | MR 251026 | Zbl 0184.29401

[15] Kaplansky, I. Commutative Rings, rev. ed., Univ. Chicago Press, Chicago (1974) | Zbl 0296.13001

[16] Lewis, W. J. The spectrum of a ring as a partially ordered set, J. Algebra, Tome 25 (1973), pp. 419-434 | Article | MR 314811 | Zbl 0266.13010

[17] Mcadam, S. Going down in polynomial rings, Can. J. Math., Tome 23 (1971), pp. 704-711 | Article | MR 280482 | Zbl 0223.13006

[18] Picavet, G. Universally going-down rings, 1-split rings and absolute integral closure, Comm. Algebra, Tome 31 (2003), pp. 4655-4685 | Article | MR 1998022 | Zbl 01980552

[19] Ratliff, Jr., L. J. Going-between rings and contractions of saturated chains of prime ideals, Rocky Mountain J. Math., Tome 7 (1977), pp. 777-787 | Article | MR 447207 | Zbl 0372.13008

[20] Ratliff, Jr., L. J. A(X) and GB-Noetherian rings, Rocky Mountain J. Math., Tome 9 (1979), pp. 337-353 | MR 519947 | Zbl 0426.13006