On a flat manifold , M. Kontsevich’s formality quasi-isomorphism is compatible with cup-products on tangent cohomology spaces, in the sense that for any formal Poisson -tensor the derivative at of the quasi-isomorphism induces an isomorphism of graded commutative algebras from Poisson cohomology space to Hochschild cohomology space relative to the deformed multiplication built from via the quasi-isomorphism. We give here a detailed proof of this result, with signs and orientations precised.
@article{AMBP_2003__10_1_75_0, author = {Manchon, Dominique and Torossian, Charles}, title = {Cohomologie tangente et cup-produit pour la quantification de Kontsevich}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {10}, year = {2003}, pages = {75-106}, doi = {10.5802/ambp.168}, zbl = {02068411}, mrnumber = {1990011}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2003__10_1_75_0} }
Manchon, Dominique; Torossian, Charles. Cohomologie tangente et cup-produit pour la quantification de Kontsevich. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 75-106. doi : 10.5802/ambp.168. http://gdmltest.u-ga.fr/item/AMBP_2003__10_1_75_0/
[1] Kontsevich quantization and invariant distributions on Lie groups, Ann. Sci. Ec.Normale Sup. (4), Tome 35, no.3 (2002), pp. 371-390 | Numdam | MR 1914002 | Zbl 1009.22020
[2] Choix des signes pour la formalité de Kontsevich, Pacific J. Math., Tome 203 (2002), pp. 23-66 | Article | MR 1895924 | Zbl 01818958
[3] Deformation theory and quantization I. Deformations of symplectic structures, Ann. Phys., Tome 111 (1978), pp. 61-110 | Article | MR 496157 | Zbl 0377.53024
[4] From local to global deformation quantization of Poisson manifolds (2000) (arXiv : math/QA/0012228) | Zbl 1037.53063
[5] Compactification of configuration spaces, Ann. Math., Tome 139 (1994), pp. 183-225 | Article | MR 1259368 | Zbl 0820.14037
[6] A deformed version of Tamarkin’s formality theorem (2002) (Prépublication, IRMA Strasbourg)
[7] Deformation quantization of Poisson manifolds I (1997) (arXiv : math/QA/9709040)
[8] On the morphism of Duflo-Kirillov type, Journal of Geometry and Physics, Tome 41 (2002), pp. 73-113 | Article | MR 1872382 | Zbl 01758080
[9] Another proof of M. Kontsevich Formality theorem for R-n (1998) (arXiv : math/QA/9803025)