We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with -bounded geometry and nonnegative Ricci curvature.
@article{AMBP_2003__10_1_133_0, author = {Marias, Michel}, title = {$L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {10}, year = {2003}, pages = {133-160}, doi = {10.5802/ambp.171}, zbl = {02068414}, mrnumber = {1990014}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2003__10_1_133_0} }
Marias, Michel. $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 133-160. doi : 10.5802/ambp.171. http://gdmltest.u-ga.fr/item/AMBP_2003__10_1_133_0/
[1] Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J. (2), Tome 46 (1994) no. 4, pp. 457-468 | Article | MR 1301284 | Zbl 0835.22008
[2] Riesz means on Lie groups and Riemannian manifolds of nonnegative curvature, Bull. Soc. Math. France, Tome 122 (1994) no. 2, pp. 209-223 | Numdam | MR 1273901 | Zbl 0832.22014
[3] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Tome 155 (1977) no. 3, pp. 249-276 | Article | MR 455055 | Zbl 0341.35052
[4] Riesz means of Riemannian manifolds, Geometry of the Laplace operator, Amer. Math. Soc., Providence, R.I. (Proc. Sympos. Pure Math., XXXVI) (1980), pp. 1-12 | MR 573426 | Zbl 0443.58023
[5] Geometry of manifolds, Academic Press, New York (1964) | MR 169148 | Zbl 0132.16003
[6] Gaussian estimates and -boundedness of Riesz means, J. Evol. Equ., Tome 2 (2002) no. 3, pp. 299-317 | Article | MR 1930609
[7] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., Tome 17 (1982) no. 1, pp. 15-53 | MR 658471 | Zbl 0493.53035
[8] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Tome 83 (1977) no. 4, pp. 569-645 | Article | MR 447954 | Zbl 0358.30023
[9] estimates for strongly singular integrals on spaces of homogeneous type, J. Funct. Anal., Tome 39 (1980) no. 1, pp. 1-15 | Article | MR 593784 | Zbl 0461.46039
[10] Inequalities for strongly singular convolution operators, Acta Math., Tome 124 (1970), pp. 9-36 | Article | MR 257819 | Zbl 0188.42601
[11] spaces of several variables, Acta Math., Tome 129 (1972) no. 3-4, pp. 137-193 | Article | MR 447953 | Zbl 0257.46078
[12] Oscillating multipliers on noncompact symmetric spaces, J. Reine Angew. Math., Tome 409 (1990), pp. 93-105 | MR 1061520 | Zbl 0696.43007
[13] Les distributions, Dunod, Paris (1962) | MR 132390 | Zbl 0115.10102
[14] On multiplier transformations, Duke Math. J, Tome 26 (1959), pp. 221-242 | Article | MR 104973 | Zbl 0085.09201
[15] The analysis of linear partial differential operators, Vol. III, Springer-Verlag, Berlin (1994) | MR 404822 | Zbl 0601.35001
[16] On the parabolic kernel of the Schrödinger operator, Acta Math., Tome 156 (1986) no. 3-4, pp. 153-201 | Article | MR 834612 | Zbl 0611.58045
[17] Estimations des sommes de Riesz d’opérateurs de Schrödinger sur les variétés riemanniennes et les groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math., Tome 315 (1992) no. 1, pp. 13-18 | MR 1172399 | Zbl 0760.58040
[18] Estimées des solutions de l’équation des ondes sur les variétés riemanniennes, les groupes de Lie et applications, Harmonic analysis and number theory (Montreal, PQ, 1996), Amer. Math. Soc., Providence, RI (CMS Conf. Proc.) Tome 21 (1997), pp. 103-126 | MR 1472781 | Zbl 0927.58014
[19] -boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds, To appear in Ark. Mat.. | MR 1971944 | Zbl 1038.42016
[20] Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, Tome 6 (1990) no. 3-4, pp. 141-154 | Article | MR 1125759 | Zbl 0763.43005
[21] Some singular integral transformations bounded in the Hardy space , J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 25 (1978) no. 1, pp. 93-108 | MR 487232 | Zbl 0383.42006
[22] On some estimates for the wave equation in and , J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 27 (1980) no. 2, pp. 331-354 | MR 586454 | Zbl 0437.35042
[23] On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 28 (1981) no. 2, pp. 267-315 | MR 633000 | Zbl 0469.42003
[24] The Laplacian on a Riemannian manifold, Cambridge University Press, Cambridge (1997) | MR 1462892 | Zbl 0868.58074
[25] Spectral theory of elliptic operators on noncompact manifolds, Astérisque (1992) no. 207, pp. 35-108 | MR 1205177 | Zbl 0793.58039
[26] estimates for strongly singular convolution operators in , Ark. Mat., Tome 14 (1976) no. 1, pp. 59-64 | Article | MR 412722 | Zbl 0321.42017
[27] On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa (3), Tome 24 (1970), pp. 331-348 | Numdam | MR 270219 | Zbl 0201.14901
[28] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J. (1970) | MR 290095 | Zbl 0207.13501
[29] -estimates on functions of the Laplace operator, Duke Math. J., Tome 58 (1989) no. 3, pp. 773-793 | Article | MR 1016445 | Zbl 0691.58043
[30] Analysis and geometry on groups, Cambridge University Press, Cambridge (1992) | MR 1218884 | Zbl 0813.22003
[31] Special trigonometric series in -dimensions, Mem. Amer. Math. Soc., Tome 59 (1965) | MR 182838 | Zbl 0136.36601