Let be a non-maximal order in a finite algebraic number field with integral closure . Although is not a unique factorization domain, we obtain a positive integer and a family (called a Cale basis) of primary irreducible elements of such that has a unique factorization into elements of for each coprime with the conductor of . Moreover, this property holds for each nonzero when the natural map is bijective. This last condition is actually equivalent to several properties linked to almost divisibility properties like inside factorial domains, almost Bézout domains, almost GCD domains.
@article{AMBP_2003__10_1_117_0, author = {Picavet-L'Hermitte, Martine}, title = {Cale Bases in Algebraic Orders}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {10}, year = {2003}, pages = {117-131}, doi = {10.5802/ambp.170}, zbl = {02068413}, mrnumber = {1990013}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2003__10_1_117_0} }
Picavet-L’Hermitte, Martine. Cale Bases in Algebraic Orders. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 117-131. doi : 10.5802/ambp.170. http://gdmltest.u-ga.fr/item/AMBP_2003__10_1_117_0/
[1] Almost Bézout domains II, J. Algebra, Tome 167 (1994), pp. 547-556 | Article | MR 1287059 | Zbl 0821.13006
[2] On primary factorizations, J. Pure Appl. Algebra, Tome 54 (1988), pp. 141-154 | Article | MR 963540 | Zbl 0665.13004
[3] Almost Bézout domains, J. Algebra, Tome 142 (1991), pp. 285-309 | Article | MR 1127065 | Zbl 0749.13013
[4] Inside factorial monoids and integral domains, J. Algebra, Tome 252 (2002), pp. 350-375 | Article | MR 1925142 | Zbl 1087.13510 | Zbl 01836712
[5] Almost GCD domains of finite -character, J. Algebra, Tome 245 (2001), pp. 161-181 | Article | MR 1868187 | Zbl 1094.13537 | Zbl 01721741
[6] Fermat’s last Theorem, Springer GTM, Berlin (1977) | MR 616635 | Zbl 0355.12001
[7] Interprétation factorielle du nombre de classes dans les ordres des corps quadratiques, Ann. Math. Blaise Pascal, Tome 7 (2) (2000), pp. 13-18 | Article | Numdam | MR 1815164 | Zbl 1013.11071
[8] Non-unique factorizations in orders of global fields, J. Reine Angew. Math., Tome 459 (1995), pp. 89-118 | MR 1319518 | Zbl 0812.11061
[9] Factorization in some orders with a PID as integral closure, Algebraic Number Theory and Diophantine Analysis, de Gruyter, Berlin-NewYork (2000), pp. 365-390 | MR 1770474 | Zbl 0971.13016
[10] Weakly factorial quadratic orders, Arab. J. Sci. and Engineering, Tome 26 (2001), pp. 171-186 | MR 1843467
[11] A general theory of almost factoriality, Manuscripta Math., Tome 51 (1985), pp. 29-62 | Article | MR 788672 | Zbl 0587.13010
[12] The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc., Tome 115 (1994), pp. 379-391 | Article | MR 1269926 | Zbl 0828.11068