On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans , où est un domaine lipschitzien borné de ().
@article{AMBP_2003__10_1_107_0, author = {Monniaux, Sylvie}, title = {Unicit\'e dans $L^d$ des solutions du syst\`eme de Navier-Stokes~~: cas des domaines lipschitziens}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {10}, year = {2003}, pages = {107-116}, doi = {10.5802/ambp.169}, zbl = {02068412}, mrnumber = {1990012}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2003__10_1_107_0} }
Monniaux, Sylvie. Unicité dans $L^d$ des solutions du système de Navier-Stokes : cas des domaines lipschitziens. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 107-116. doi : 10.5802/ambp.169. http://gdmltest.u-ga.fr/item/AMBP_2003__10_1_107_0/
[1] On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., Tome 2 (2000), pp. 16-98 | Article | MR 1755865 | Zbl 0989.35107
[2] MR 2002j :76036, Mathematical Reviews, American Mathematical Society (2002) | Article
[3] Solutions des équations de Navier-Stokes incompressibles dans un domaine extérieur, Rev. Mat. Iberoamericana, Tome 17 (2001), pp. 21-68 | Article | MR 1846090 | Zbl 0984.35126
[4] The Stokes resolvent in 3D domains with conical boundary points : nonregularity in -spaces, Adv. Differential Equations, Tome 6 (2001), pp. 175-228 | MR 1799750 | Zbl 1038.35053
[5] Unicité dans et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana, Tome 16 (2000), pp. 605-667 | MR 1813331 | Zbl 0970.35101
[6] Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal., Tome 159 (1998), pp. 323-368 | Article | MR 1658089 | Zbl 0930.35045
[7] Recent developments in the Navier-Stokes problem, Chapman & Hall, Boca Raton (2002) (CRC Research Notes in Mathematics 431) | MR 1938147 | Zbl 1034.35093
[8] Uniqueness of mild solutions of the Navier-Stokes system in , Comm. Partial Differential Equations, Tome 26 (2001), pp. 2211-2226 | Article | MR 1876415 | Zbl 1086.35077 | Zbl 01717449
[9] Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA), Int. Press, Boston, MA (1997), pp. 105-212 | MR 1724946 | Zbl 0926.35115
[10] Uniqueness of mild solutions of the Navier-Stokes equation and maximal regularity, C. R. Acad. Sci. Paris, Série I, Tome 328 (1999), pp. 663-668 | MR 1680809 | Zbl 0931.35127
[11] Existence of solutions in critical spaces of the Navier-Stokes system in 3D bounded Lipschitz domains (2002) (Preprint)
[12] On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains, J. Funct. Anal., Tome 195 (2002), pp. 1-11 | Article | MR 1934350 | Zbl 1034.35095
[13] Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders, Amer. J. Math., Tome 113 (1991), pp. 293-373 | Article | MR 1099449 | Zbl 0734.35080
[14] Incompressible fluid flows on rough domains, Semigroups of operators : theory and applications (Newport Beach, CA, 1998), Birkhäuser, Basel (2000), pp. 320-334 (Progr. Nonlinear Differential Equations Appl., 42) | MR 1788895 | Zbl 0965.35120