Unicité dans L d des solutions du système de Navier-Stokes  : cas des domaines lipschitziens
Monniaux, Sylvie
Annales mathématiques Blaise Pascal, Tome 10 (2003), p. 107-116 / Harvested from Numdam

On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans 𝒞([0,T);L d (Ω) d ), où Ω est un domaine lipschitzien borné de d (d3).

@article{AMBP_2003__10_1_107_0,
     author = {Monniaux, Sylvie},
     title = {Unicit\'e dans $L^d$ des solutions du syst\`eme de Navier-Stokes~~: cas des domaines lipschitziens},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {10},
     year = {2003},
     pages = {107-116},
     doi = {10.5802/ambp.169},
     zbl = {02068412},
     mrnumber = {1990012},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AMBP_2003__10_1_107_0}
}
Monniaux, Sylvie. Unicité dans $L^d$ des solutions du système de Navier-Stokes  : cas des domaines lipschitziens. Annales mathématiques Blaise Pascal, Tome 10 (2003) pp. 107-116. doi : 10.5802/ambp.169. http://gdmltest.u-ga.fr/item/AMBP_2003__10_1_107_0/

[1] Amann, H. On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., Tome 2 (2000), pp. 16-98 | Article | MR 1755865 | Zbl 0989.35107

[2] Cannone, M. MR 2002j :76036, Mathematical Reviews, American Mathematical Society (2002) | Article

[3] Depauw, N. Solutions des équations de Navier-Stokes incompressibles dans un domaine extérieur, Rev. Mat. Iberoamericana, Tome 17 (2001), pp. 21-68 | Article | MR 1846090 | Zbl 0984.35126

[4] Deuring, P. The Stokes resolvent in 3D domains with conical boundary points  : nonregularity in L p -spaces, Adv. Differential Equations, Tome 6 (2001), pp. 175-228 | MR 1799750 | Zbl 1038.35053

[5] Et E. Terraneo, G. Furioli, P.-G. Lemarié-Rieusset Unicité dans L 3 (R 3 ) 3 et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana, Tome 16 (2000), pp. 605-667 | MR 1813331 | Zbl 0970.35101

[6] Fabes, E.; Mendez, O.; Mitrea, M. Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal., Tome 159 (1998), pp. 323-368 | Article | MR 1658089 | Zbl 0930.35045

[7] Lemarié-Rieusset, P.-G. Recent developments in the Navier-Stokes problem, Chapman & Hall, Boca Raton (2002) (CRC Research Notes in Mathematics 431) | MR 1938147 | Zbl 1034.35093

[8] Lions, P.-L.; Masmoudi, N. Uniqueness of mild solutions of the Navier-Stokes system in L N , Comm. Partial Differential Equations, Tome 26 (2001), pp. 2211-2226 | Article | MR 1876415 | Zbl 1086.35077 | Zbl 01717449

[9] Meyer, Y. Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA), Int. Press, Boston, MA (1997), pp. 105-212 | MR 1724946 | Zbl 0926.35115

[10] Monniaux, S. Uniqueness of mild solutions of the Navier-Stokes equation and maximal L p -regularity, C. R. Acad. Sci. Paris, Série I, Tome 328 (1999), pp. 663-668 | MR 1680809 | Zbl 0931.35127

[11] Monniaux, S. Existence of solutions in critical spaces of the Navier-Stokes system in 3D bounded Lipschitz domains (2002) (Preprint)

[12] Monniaux, S. On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains, J. Funct. Anal., Tome 195 (2002), pp. 1-11 | Article | MR 1934350 | Zbl 1034.35095

[13] Shen, Z. Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders, Amer. J. Math., Tome 113 (1991), pp. 293-373 | Article | MR 1099449 | Zbl 0734.35080

[14] Taylor, M. Incompressible fluid flows on rough domains, Semigroups of operators : theory and applications (Newport Beach, CA, 1998), Birkhäuser, Basel (2000), pp. 320-334 (Progr. Nonlinear Differential Equations Appl., 42) | MR 1788895 | Zbl 0965.35120