@article{AMBP_2002__9_2_229_0, author = {Colin, Thierry}, title = {Mod\`eles stratifi\'es en m\'ecanique des fluides g\'eophysiques}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {9}, year = {2002}, pages = {229-243}, mrnumber = {1969080}, zbl = {02081312}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2002__9_2_229_0} }
Colin, Thierry. Modèles stratifiés en mécanique des fluides géophysiques. Annales mathématiques Blaise Pascal, Tome 9 (2002) pp. 229-243. http://gdmltest.u-ga.fr/item/AMBP_2002__9_2_229_0/
[1] Regularity and integrability of 3d euler and navier-stokes equations for rotating fluids. Asymptot. Anal., 15, no. 2: 103-150, 1997. | MR 1480996 | Zbl 0890.35109
, , et .[2] Existence of solutions to the stommel-charney model of the gulf stream. SIAM J. Math. Anal., 19, (6): , 1988. | MR 965256 | Zbl 0679.76108
, , et .[3] Validity of the quasigeostrophic model for large scale flow in the atmosphere and ocean. Jour. Math. Anal., 25, (4): 1023-1068, 1994. | MR 1278890 | Zbl 0811.35097
et .[4] Some remarks on the derivation of the sverdrup relation. J. Math. Fluid Mech., 4 (2): 95-108, 2002. | MR 1908437 | Zbl 1002.35098
et .[5] A corrector for the sverdrup solution for a domain with islands, to appear in. Applicable Anal., 2002. | MR 2033236 | Zbl 02103586
, , et .[6] Nonstationary models for shallow lakes. Asymptot. Anal., 22 (1): 15-38, 2000. | MR 1739516 | Zbl 0953.35116
, , et .[7] A propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures Appl, 9 (76): 739-755, 1997. | MR 1485418 | Zbl 0896.35103
.[8] Remarks on a homogeneous model of ocean circulation. Asymptotic Anal., 12 (2): 153-168, 1996. | MR 1386229 | Zbl 0845.76095
.[9] The cauchy problem and the continuous limit for the multilayer model in geophysical fluid dynamics. SIAM J. Math. Anal., 28 (3): 516-529, 1997. | MR 1443606 | Zbl 0879.76115
.[10] Rotating fluid at high rossby number driven by a surface stress: existence and convergence. Adv. Differential Equations, 2 (5): 715-751, 1997. | MR 1751425 | Zbl 1023.76593
et .[11] On the homogeneous model of wind-driven ocean circulation. SIAM J. Appl. Math., 60: 43-60, 2000. | MR 1740834 | Zbl 0958.76092
et .[12] The tridimensional navier-stokes equations with almost bidimensional data: stability, uniqueness, and life span. Internat. Math. Res. Notices, 18: 919-935, 1997. | MR 1481611 | Zbl 0893.35098
.[13] Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations, 22, (5-6): 953-975, 1997. | MR 1452174 | Zbl 0880.35093
et .[14] Models of the coupled atmosphere and ocean (cao i). Computational Mechanics Advances, 1: 5-54, 1993. | MR 1252502 | Zbl 0805.76011
, , et .[15] Numerical analysis of the coupled atmosphere-ocean models (cao ii). Computational Mechanics Advances, 1: 55-119, 1993. | MR 1252502 | Zbl 0805.76052
, , et .[16] Geostrophic asymptotics of the primitive equations of the atmosphere. Topol. Methods Nonlinear Anal., 4, (2): 253-287, 1994. | MR 1350974 | Zbl 0846.35106
, , et .[17] Mathematical theory for the coupled atmosphere-ocean models (cao iii). J. Math. Pures Appl., 9 (74): 105-163, 1995. | MR 1325825 | Zbl 0866.76025
, , et .[18] Geophysical fluid dynamics. Springer Verlag, second edition, 1987. | Zbl 0713.76005
.[19] Solitary waves in a two-layer quasigeostrophic model with wind stress forcing. Geophys. Astrophys. Fluid Dynam, 91, (3-4): 169-197, 1999. | MR 1755614
et .[20] Navier-stokes equations in three-dimensional thin domains with various boundary conditions. Adv. Differential Equations, 1, (4) : 499-546, 1996. | MR 1401403 | Zbl 0864.35083
et .