@article{AMBP_2002__9_1_63_0, author = {Melzi, Camillo}, title = {Large time estimates for non-symmetric heat kernel on the affine group}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {9}, year = {2002}, pages = {63-78}, mrnumber = {1914261}, zbl = {01805821}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2002__9_1_63_0} }
Melzi, Camillo. Large time estimates for non-symmetric heat kernel on the affine group. Annales mathématiques Blaise Pascal, Tome 9 (2002) pp. 63-78. http://gdmltest.u-ga.fr/item/AMBP_2002__9_1_63_0/
[1] Sublaplacians on groups of polynomial growth. Mem. Amer. Math. Soc., to appear. | MR 1878341
.[2] Géodésiques et diffusions en temps petit. Astérisque, 84-85:17-31, 1981. | MR 634964 | Zbl 0507.60070
.[3] Comportement asymptotique des puissances de convolution d'une probabilité sur un espace symétrique. Astérisque, 74:29-45, 1980. | MR 588156 | Zbl 0463.60009
.[4] Heat bounds on hyperbolic space and Kleinian groups. Proc. London Math. Soc. (3), 52:182-208, 1988. | MR 940434 | Zbl 0643.30035
and .[5] Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differential Geometry, 45:33-52, 1997. | MR 1443330 | Zbl 0865.58042
.[6] Estimates of heat kernels on Riemannian manifolds. In B. Davies and Yu. Safarov, editors, Spectral Theory and Gemetry. Edinburgh 1998, pages 140-225. London Math. Soc. Lectures Nte Series 273, Cambridge Univ. Press, 1998. | MR 1736868 | Zbl 0985.58007
.[7] Semi-groups of measures on Lie groups. A.M.S., 81:264-293, 1956. | MR 79232 | Zbl 0073.12402
.[8] Gaussian estimates for heat kernels on Lie groups. Math. Proc. Camb. Phil. Soc., 128:45-64, 2000. | MR 1724427 | Zbl 0947.22007
.[9] Balls and metrics defined by vector fields. Acta Math., 155:103-147, 1985. | MR 793239 | Zbl 0578.32044
, , and .[10] Stabilization of solutions of the third mixed problem for a second order parabolic equation in a non-cyclic domain (Engl. trans.). Math. USSR Sb., 39:87-105, 1981. | MR 560465 | Zbl 0462.35048
.[11] Small time gaussian estimates of heat diffusion kernels. Part I: The semi-group technique. Bull. Sc. Math., 113:253-277, 1989. | MR 1016211 | Zbl 0703.58052
.[12] Small time gaussian estimates of heat diffusion kernels. Part II: The theory of large deviations. J. Funct. Anal., 93:1-33, 1990. | MR 1070036 | Zbl 0712.58056
.[13] Analysis on Lie groups. Rev. Mat. Iberoamericana, 12:791-917, 1996. | MR 1435484 | Zbl 0881.22009
.[14] Forthcoming book. Cambridge University Press.
and .[15] Analysis and geometry on groups. Cambridge Univ. Press, Cambridge, 1992. | MR 1218884 | Zbl pre05521653
, , and .