@article{AMBP_2002__9_1_1_0, author = {Dobbs, David E. and Fontana, Marco and Picavet, Gabriel}, title = {A spectral construction of a treed domain that is not going-down}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {9}, year = {2002}, pages = {1-7}, mrnumber = {1914258}, zbl = {01805818}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2002__9_1_1_0} }
Dobbs, David E.; Fontana, Marco; Picavet, Gabriel. A spectral construction of a treed domain that is not going-down. Annales mathématiques Blaise Pascal, Tome 9 (2002) pp. 1-7. http://gdmltest.u-ga.fr/item/AMBP_2002__9_1_1_0/
[1] Topologie Générale, Chapitres 1-4. Hermann, Paris, 1971. | MR 358652 | Zbl 0249.54001
.[2] On going-down for simple overrings, II. Comm. Algebra, 1:439-458, 1974. | MR 364225 | Zbl 0285.13001
.[3] Posets admitting a unique order-compatible topology. Discrete Math., 41:235-240, 1982. | MR 676885 | Zbl 0498.06004
.[4] On treed overrings and going-down domains. Rend. Mat., 7:317-322, 1987. | MR 986002 | Zbl 0683.13003
.[5] Universally going-down homomorphisms of commutative rings. J. Algebra, 90:410-429, 1984. | MR 760019 | Zbl 0544.13004
and .[6] On certain distinguished spectral sets. Ann. Mat. Pura Appl., 128:227-240, 1980. | MR 640784 | Zbl 0472.54021
, , and .[7] On going-down for simple overrings, III. Proc. Amer. Math. Soc., 54:35-38, 1976. | MR 417153 | Zbl 0285.13002
and .[8] Going down: a survey. Nieuw Arch. v. Wisk., 26:255-291, 1978. | MR 491656 | Zbl 0383.13005
and .[9] Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., 123:331-355, 1980. | MR 581935 | Zbl 0443.13001
.[10] Multiplicative Ideal Theory. Dekker, New York, 1972. | MR 427289 | Zbl 0248.13001
.[11] Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43-60, 1969. | MR 251026 | Zbl 0184.29401
.[12] The spectrum of a ring as a partially ordered set. J. Algebra, 25:419-434, 1973. | MR 314811 | Zbl 0266.13010
.[13] Local rings. Wiley/Interscience, New York, 1962. | MR 155856 | Zbl 0123.03402
.