Harmonic functions on annuli of graphs
Blachère, Sébastien
Annales mathématiques Blaise Pascal, Tome 8 (2001), p. 47-59 / Harvested from Numdam
Publié le : 2001-01-01
@article{AMBP_2001__8_2_47_0,
     author = {Blach\`ere, S\'ebastien},
     title = {Harmonic functions on annuli of graphs},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {8},
     year = {2001},
     pages = {47-59},
     mrnumber = {1888815},
     zbl = {01805811},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2001__8_2_47_0}
}
Blachère, Sébastien. Harmonic functions on annuli of graphs. Annales mathématiques Blaise Pascal, Tome 8 (2001) pp. 47-59. http://gdmltest.u-ga.fr/item/AMBP_2001__8_2_47_0/

[1] T. Coulhon and L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), no. 2, 293-314. | MR 1232845 | Zbl 0782.53066

[2] T. Delmotte, Inégalité de Harnack elliptique sur les graphes, Colloquium Mathematicum 80 (1997), no. 1, 19-37. | MR 1425544 | Zbl 0871.31008

[3] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), no. 1, 181-232. | MR 1681641 | Zbl 0922.60060

[4] P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains, Ann. Appl. Probab. 3 (1993), no. 3, 696-730. | MR 1233621 | Zbl 0799.60058

[5] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. | MR 1683160 | Zbl 0954.46022

[6] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure and Applied Math. 14 (1961), 577-591. | MR 159138 | Zbl 0111.09302

[7] L. Saloff-Coste, Isoperimetric inequalities and decay of iterated kernels for almost-transitive Markov chains, Combin. Probab. Comput. 4 (1995), 419-442. | MR 1377559 | Zbl 0842.60070