On the thickness of topological spaces
Brunet, Bernard
Annales mathématiques Blaise Pascal, Tome 2 (1995), p. 25-33 / Harvested from Numdam
Publié le : 1995-01-01
@article{AMBP_1995__2_2_25_0,
     author = {Brunet, Bernard},
     title = {On the thickness of topological spaces},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {2},
     year = {1995},
     pages = {25-33},
     mrnumber = {1371889},
     zbl = {0849.54038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_1995__2_2_25_0}
}
Brunet, Bernard. On the thickness of topological spaces. Annales mathématiques Blaise Pascal, Tome 2 (1995) pp. 25-33. http://gdmltest.u-ga.fr/item/AMBP_1995__2_2_25_0/

(1) B. Brunet : On the dimension of ordered spaces, to appear. | MR 1475806 | Zbl 0905.54021

(2) R. Engelking : Dimension theory, (North-Holland, Amsterdam, 1978). | MR 482697 | Zbl 0401.54029

(3) V.V. Filippov : On the inductive dimension of the product of bicompacta,Soviet. Math. Dokl., 13 (1972), N° 1, 250-254. | MR 292043 | Zbl 0243.54032

(4) L. Haddad : Introduction à l'analyse non-standard, (Ecole d'Eté, Beyrouth, 1973).

(5) O.V. Lokucievskii : On the dimension of bicompacta, (en russe), Dokl. Akad. Nauk S.S.S.R. 67 (1949), 217-219. | MR 30750 | Zbl 0033.02301

(6) G. Nobeling : Uber eine n-dimensionale Universatmenge im IR2n+1, Math. Ann., 104 (1931), 71-80. | JFM 56.0506.02

(7) J.P. Reveilles : Une définition externe de la dimension topologique, Note aux Comptes Rendus à l'Académie des Sciences, 299, Série 1, 14 (1984), 707-710. | Zbl 0572.54032

(8) P. Roy : Nonequality of dimension for metric spaces, Trans. Amer. Math. Soc., 134 (1968), 117-132. | MR 227960 | Zbl 0181.26002

(9) E.K. Van Douwen : The small inductive dimension can be raised by the adjunction of a single point, Indagationes Mathematicae, 35 (1973), Fasc. 5, 434-442. | MR 331347 | Zbl 0268.54033