@article{AMBP_1995__2_1_19_0, author = {Araujo, Jes\'us and Beckenstein, Edward and Narici, Lawrence}, title = {Separating maps and the nonarchimedean Hewitt theorem}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {2}, year = {1995}, pages = {19-27}, mrnumber = {1342801}, zbl = {0844.46053}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_1995__2_1_19_0} }
Araujo, J.; Beckenstein, E.; Narici, L. Separating maps and the nonarchimedean Hewitt theorem. Annales mathématiques Blaise Pascal, Tome 2 (1995) pp. 19-27. http://gdmltest.u-ga.fr/item/AMBP_1995__2_1_19_0/
[1] Distance from an isometry to the Banach-Stone maps. In p-adic Functional Analysis, edited by J. M. Bayod, N. de Grande-de Kimpe, J. Martinez-Maurica, Lect. Notes in Pure and Appl. Math. 137, Dekker, New York, 1992, 1-12. | MR 1152564 | Zbl 0780.46041
,[2] The nonarchimedean Banach-Stone theorem. In p-adic Analysis, edited by F. Baldassarri, S. Bosch and B. Dwork, Lect. Notes in Math. 1454, Springer-Verlag, Berlin, -Heidelberg-New York1990, 64-79. | MR 1094847 | Zbl 0731.46043
and ,[3] Isometries between non-Archimedean spaces of continuous functions. In Papers on General Topology and Applications, edited by S. Andima, R. Kopperman, P. Ram Misra, A. R. Todd, Annals of the New York Academy of Sciences, 659, 1992, 12-17. | MR 1485265
and ,[4] Rings of continuous functions with values in a topological field. Trans. A. M. S. 204 (1975), 91-112. | MR 402687 | Zbl 0299.54016
, , and ,[5] A nonarchimedean Banach-Stone theorem. Proc. A.M.S. 100 (1987), 242-246. | MR 884460 | Zbl 0645.46065
and ,[6] Automatic continuity of certain linear isomorphisms. Acad. Royale Belg. Bull. Cl. Sci. 73(5) (1987), 191-200. | MR 949991 | Zbl 0664.46079
and ,[7] Topological algebras. Mathematics Studies 24, North Holland, Amsterdam 1977. | MR 473835 | Zbl 0348.46041
, and ,[8] Automatic continuity of linear maps on spaces of continuous functions. Manuscripta Math., 62 (1988), 257-275. | MR 966626 | Zbl 0666.46018
, and ,[9] Rings of continuous functions. University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. | MR 116199 | Zbl 0093.30001
and ,[10] Rings of real-valued continuous functions. I. Trans. A. M. S. 64 (1948), 45-99. | MR 26239 | Zbl 0032.28603
,[11] Automatic continuity of separating linear isomorphisms. Canad. Math. Bull., 33(2) (1990) 139-144. | MR 1060366 | Zbl 0714.46040
,[12] Separating maps on rings of continuous functions. In p-adic Functional Analysis, edited by N. de Grande-de Kimpe, S. Navarro and W. H. Schikhof. Universidad de Santiago, Santiago, Chile, 1994, 69-82.
, and ,[13] Non-archimedean Functional Analysis. Dekker, New York 1978. | MR 512894 | Zbl 0396.46061
,[13] Biseparating maps and homeomorphic realcompactifications to appear in J. Math. Ann. Appl. | MR 1329423 | Zbl 0828.47024
, and[14] Pseudocompact and P-spaces in non archimedean Functional Analysis p-Adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics, 137. Dekker 1992, pags 13-21 | MR 1152565 | Zbl 0780.46042
, and