@article{AMBP_1994__1_1_75_0, author = {Bajpai, S.D. and Arora, M.S.}, title = {Semi-orthogonality of a class of the Gauss' hypergeometric polynomials}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {1}, year = {1994}, pages = {75-83}, mrnumber = {1275218}, zbl = {0798.33006}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_1994__1_1_75_0} }
Bajpai, S.D.; Arora, M.S. Semi-orthogonality of a class of the Gauss' hypergeometric polynomials. Annales mathématiques Blaise Pascal, Tome 1 (1994) pp. 75-83. http://gdmltest.u-ga.fr/item/AMBP_1994__1_1_75_0/
[1] A new orthogonality property for the Jacobi polynomials and its applications. Nat. Acad. Sci. Letters, Vol. 15, No 7 (1992), 1-6. | MR 1224858 | Zbl 0904.33002
[2] Higher transcendental functions. Vol. 1, Mc Graw-Hill, New York (1953). | Zbl 0051.30303
, et. al.[3] Higher transcendental functions. Vol. 2, Mc Graw-Hill, New York (1953). | Zbl 0052.29502
, et. al.[4] Tables of integral transforms. Vol. 2, Mc Graw-Hill, New York (1954). | Zbl 0058.34103
, et. al.[5] The G- and H- functions as symmetrical Fourier Kernels. Trans. Amer. Math. Soc., 98 (1961), 395-429. | MR 131578 | Zbl 0096.30804
[6] The H-function with applications in statistics and other disciplines. John Wiley and Sons, New Delhi (1978). | MR 513025 | Zbl 0382.33001
and