Semi-orthogonality of a class of the Gauss' hypergeometric polynomials
Bajpai, S.D. ; Arora, M.S.
Annales mathématiques Blaise Pascal, Tome 1 (1994), p. 75-83 / Harvested from Numdam
Publié le : 1994-01-01
@article{AMBP_1994__1_1_75_0,
     author = {Bajpai, S.D. and Arora, M.S.},
     title = {Semi-orthogonality of a class of the Gauss' hypergeometric polynomials},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {1},
     year = {1994},
     pages = {75-83},
     mrnumber = {1275218},
     zbl = {0798.33006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_1994__1_1_75_0}
}
Bajpai, S.D.; Arora, M.S. Semi-orthogonality of a class of the Gauss' hypergeometric polynomials. Annales mathématiques Blaise Pascal, Tome 1 (1994) pp. 75-83. http://gdmltest.u-ga.fr/item/AMBP_1994__1_1_75_0/

[1] Bajpai. S.D. A new orthogonality property for the Jacobi polynomials and its applications. Nat. Acad. Sci. Letters, Vol. 15, No 7 (1992), 1-6. | MR 1224858 | Zbl 0904.33002

[2] Erdelyi. A., et. al. Higher transcendental functions. Vol. 1, Mc Graw-Hill, New York (1953). | Zbl 0051.30303

[3] Erdelyi. A., et. al. Higher transcendental functions. Vol. 2, Mc Graw-Hill, New York (1953). | Zbl 0052.29502

[4] Erdelyi. A., et. al. Tables of integral transforms. Vol. 2, Mc Graw-Hill, New York (1954). | Zbl 0058.34103

[5] C. Fox The G- and H- functions as symmetrical Fourier Kernels. Trans. Amer. Math. Soc., 98 (1961), 395-429. | MR 131578 | Zbl 0096.30804

[6] Mathai. A.M. and Saxena. M.K. The H-function with applications in statistics and other disciplines. John Wiley and Sons, New Delhi (1978). | MR 513025 | Zbl 0382.33001