Existence and uniqueness of optimal transport maps
Cavalletti, Fabio ; Huesmann, Martin
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 1367-1377 / Harvested from Numdam

Let (X,d,m) be a proper, non-branching, metric measure space. We show existence and uniqueness of optimal transport maps for cost written as non-decreasing and strictly convex functions of the distance, provided (X,d,m) satisfies a new weak property concerning the behavior of m under the shrinking of sets to points, see Assumption 1. This in particular covers spaces satisfying the measure contraction property.We also prove a stability property for Assumption 1: If (X,d,m) satisfies Assumption 1 and m ˜=g·m, for some continuous function g>0, then also (X,d,m ˜) verifies Assumption 1. Since these changes in the reference measures do not preserve any Ricci type curvature bounds, this shows that our condition is strictly weaker than measure contraction property.

@article{AIHPC_2015__32_6_1367_0,
     author = {Cavalletti, Fabio and Huesmann, Martin},
     title = {Existence and uniqueness of optimal transport maps},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {1367-1377},
     doi = {10.1016/j.anihpc.2014.09.006},
     mrnumber = {3425266},
     zbl = {1331.49063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_6_1367_0}
}
Cavalletti, Fabio; Huesmann, Martin. Existence and uniqueness of optimal transport maps. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 1367-1377. doi : 10.1016/j.anihpc.2014.09.006. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_6_1367_0/

[1] L. Ambrosio, T. Rajala, Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces, Ann. Mat. Pura Appl. (2011), 1 -17 | MR 3158838

[2] L. Ambrosio, S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208 no. 2 (2004), 261 -301 | MR 2035027 | Zbl 1076.49023

[3] J. Bertrand, Existence and uniqueness of optimal maps on Alexandrov spaces, Adv. Math. 219 no. 3 (2008), 838 -851 | MR 2442054 | Zbl 1149.49002

[4] S. Bianchini, F. Cavalletti, The Monge problem for distance cost in geodesic spaces, Commun. Math. Phys. 318 (2013), 615 -673 | MR 3027581 | Zbl 1275.49080

[5] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math. 44 no. 4 (1991), 375 -417 | MR 1100809 | Zbl 0738.46011

[6] F. Cavalletti, Monge problem in metric measure spaces with Riemannian curvature-dimension condition, Nonlinear Anal. 99 (2014), 136 -151 | MR 3160530 | Zbl 1283.49058

[7] N. Gigli, Optimal maps in non branching spaces with Ricci curvature bounded from below, Geom. Funct. Anal. (2011), 1 -10 | MR 2984123

[8] L.V. Kantorovich, On the translocation of masses, J. Math. Sci. 133 no. 4 (2006), 1381 -1382 | MR 2117876 | Zbl 1080.49507

[9] R.J. Mccann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 no. 3 (2001), 589 -608 | MR 1844080 | Zbl 1011.58009

[10] G. Monge, Mémoire sur la théorie des déblais et des remblais, De l'Imprimerie Royale (1781)

[11] S.-I. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007), 805 -828 | MR 2341840 | Zbl 1176.28016

[12] A.M. Srivastava, A Course on Borel Sets, Springer (1998) | MR 1619545 | Zbl 0903.28001

[13] T. Rajala, K.T. Sturm, Non-branching geodesics and optimal maps in strong 𝖢𝖣(K,)-spaces, Calc. Var. Partial Differ. Equ. 50 no. 3–4 (2014), 831 -846 | MR 3216835 | Zbl 1296.53088

[14] K.T. Sturm, On the geometry of metric measure spaces.II, Acta Math. 196 no. 1 (2006), 133 -177 | MR 2237207

[15] C. Villani, Optimal Transport, Old and New, Springer (2008) | MR 2459454 | Zbl 1158.53036