Nous étudions la compacité dans du semi-groupe définissant les solutions faibles d'entropie de systèmes hyperboliques de lois de conservation généraux en dimension un d'espace. Nous établissons une estimée inférieure de l'ε-entropie de Kolmogorov de l'image par l'application d'ensembles bornés dans , qui est du même ordre que celles establies par les auteurs pour les lois de conservation scalaires. Nous obtenons aussi une estimée supérieure d'ordre pour l'ε-entropie de Kolmogorov de tels ensembles dans le cas des systèmes de Temple avec des champs charactéristiques vraiment non linéaires, ce qui étend le même type d'estimées obtenues par De Lellis et Golse dans le cas des lois de conservation scalaires à flux convexe. Comme suggéré par Lax, ces estimées quantitatives pourraient donner une mesure de l'ordre de « résolution » de méthodes numériques mises en place pour ces équations.
We study the compactness in of the semigroup mapping defining entropy weak solutions of general hyperbolic systems of conservation laws in one space dimension. We establish a lower estimate for the Kolmogorov ε-entropy of the image through the mapping of bounded sets in , which is of the same order as the ones established by the authors for scalar conservation laws. We also provide an upper estimate of order for the Kolmogorov ε-entropy of such sets in the case of Temple systems with genuinely nonlinear characteristic families, that extends the same type of estimate derived by De Lellis and Golse for scalar conservation laws with convex flux. As suggested by Lax, these quantitative compactness estimates could provide a measure of the order of “resolution” of the numerical methods implemented for these equations.
@article{AIHPC_2015__32_6_1229_0, author = {Ancona, Fabio and Glass, Olivier and Nguyen, Khai T.}, title = {On compactness estimates for hyperbolic systems of conservation laws}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {32}, year = {2015}, pages = {1229-1257}, doi = {10.1016/j.anihpc.2014.09.002}, mrnumber = {3425261}, zbl = {1339.35171}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_6_1229_0} }
Ancona, Fabio; Glass, Olivier; Nguyen, Khai T. On compactness estimates for hyperbolic systems of conservation laws. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 1229-1257. doi : 10.1016/j.anihpc.2014.09.002. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_6_1229_0/
[1] Lower compactness estimates for scalar balance laws, Commun. Pure Appl. Math. 65 no. 9 (2012), 1303 -1329 | MR 2954617 | Zbl 1244.35087
, , ,[2] Covering numbers for real-valued function classes, IEEE Trans. Inf. Theory 43 no. 5 (1997), 1721 -1724 | MR 1476815 | Zbl 0947.26008
, , ,[3] Stability of solutions for hyperbolic systems with coinciding shocks and rarefactions, SIAM J. Math. Anal. 33 no. 4 (2001), 959 -981 | MR 1885292 | Zbl 1009.35052
,[4] Vanishing viscosity solutions to nonlinear hyperbolic systems, Ann. Math. 161 (2005), 223 -342 | MR 2150387 | Zbl 1082.35095
, ,[5] Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and Its Applications vol. 20 , Oxford University Press, Oxford (2000) | MR 1816648 | Zbl 0977.35087
,[6] Stability of solutions of Temple class systems, Differ. Integral Equ. 13 no. 10–12 (2000), 1503 -1528 | MR 1787079 | Zbl 1047.35095
, ,[7] Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss. vol. 325 , Springer Verlag (2005) | MR 2169977 | Zbl 1078.35001
,[8] A quantitative compactness estimate for scalar conservation laws, Commun. Pure Appl. Math. 58 no. 7 (2005), 989 -998 | MR 2142881 | Zbl 1079.35066
, ,[9] Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc. 58 (1963), 13 -30 | MR 144363 | Zbl 0127.10602
,[10] Lectures on Nonlinear Hyperbolic Differential Equations, Math. Appl. vol. 26 , Springer Verlag, Berlin (1997) | MR 1466700 | Zbl 0881.35001
,[11] First order quasilinear equations with several independent variables, Mat. Sb. 81 no. 123 (1970), 228 -255 , Mat. Sb. 10 no. 2 (1970), 217 -243 | MR 267257
,[12] Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math. 7 (1954), 159 -193 | MR 66040 | Zbl 0055.19404
,[13] Hyperbolic systems of conservation laws II, Commun. Pure Appl. Math. 10 (1957), 537 -566 | MR 93653 | Zbl 0081.08803
,[14] Accuracy and resolution in the computation of solutions of linear and nonlinear equations, Recent Advances in Numerical Analysis, Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978, Publ. Math. Res. Cent. Univ. Wis.-Madison , Academic Press, New York (1978), 107 -117
,[15] The Riemann problem for general systems of conservation laws, J. Differ. Equ. 18 (1975), 218 -234 | MR 369939 | Zbl 0297.76057
,[16] Discontinuous solutions of non-linear differential equations, Usp. Mat. Nauk 12 no. 3(75) (1957), 3 -73 , Transl. Am. Math. Soc. Ser. 2 26 (1957), 95 -172 | MR 94541
,[17] Systèmes de Lois de Conservation. II, Diderot Editeur (1996) | MR 1459988
,[18] Systems of conservation laws with invariant submanifolds, Trans. Am. Math. Soc. 280 (1983), 781 -795 | MR 716850 | Zbl 0559.35046
,