We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation , where w is a bounded measurable function.
@article{AIHPC_2015__32_5_925_0,
author = {Bigolin, F. and Caravenna, L. and Serra Cassano, F.},
title = {Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {32},
year = {2015},
pages = {925-963},
doi = {10.1016/j.anihpc.2014.05.001},
mrnumber = {3400438},
zbl = {1331.35089},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_5_925_0}
}
Bigolin, F.; Caravenna, L.; Serra Cassano, F. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 925-963. doi : 10.1016/j.anihpc.2014.05.001. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_5_925_0/
[1] G. Alberti, S. Bianchini, L. Caravenna, Eulerian Lagrangian and Broad continuous solutions to a balance law with non-convex flux, forthcoming. | MR 3537830
[2] , , , Reduction on characteristics for continuous solution of a scalar balance law, Hyperbolic Problems: Theory, Numerics, Applications (2014), http://aimsciences.org/books/am/AMVol8.html | Zbl 06620922
[3] , , , Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Oxford (2000) | MR 1857292 | Zbl 0957.49001
[4] , , , Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 no. 2 (2006), 187 -232 | MR 2223801 | Zbl 1085.49045
[5] , Intrinsic Regular Hypersurfaces and PDEs, the Case of the Heisenberg Group, LAP Lambert Academic Publishing (2010)
[6] , , Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var. 3 (2010), 69 -97 | MR 2604618 | Zbl 1188.53027
[7] , , Distributional solutions of Burgers' equation and Intrinsic regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), 561 -568 | MR 2600502 | Zbl 1186.35030
[8] , , , , An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Prog. Math. vol. 259 , Birkhäuser (2007) | MR 2312336 | Zbl 1138.53003
[9] , , Differentiating maps into and the geometry of BV functions, Ann. Math. (2) 171 no. 2 (2006), 1347 -1385 | MR 2630066 | Zbl 1194.22009
[10] , , Implicit function theorem in Carnot–Carathéodory spaces, Commun. Contemp. Math. 8 no. 5 (2006), 657 -680 | MR 2263950 | Zbl 1160.53017
[11] , , , , Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ. 49 (2014), 1279 -1308 | MR 3168633 | Zbl 1291.22011
[12] , Measure Theory, Birkhäuser (1980) | MR 578344
[13] , The flow associated to weakly differentiable vector fields, Publ. Sc. Norm. Super. vol. 12 , Birkhäuser (2009) | MR 2512801 | Zbl 1178.35134
[14] , Lagrangian flows and the one dimensional Peano phenomenon for ODEs, J. Differ. Equ. 250 no. 7 (2011), 3135 -3149 | MR 2771257 | Zbl 1218.34008
[15] , Continuous solutions for balance laws, Ric. Mat. 55 (2006), 79 -91 | MR 2248164 | Zbl 1220.35094
[16] , , , Modern Geometry—Methods and Applications—Part III, Grad. Texts Math. vol. 124 , Springer-Verlag, New York (1990) | MR 1076994 | Zbl 0703.55001
[17] , , , Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479 -531 | MR 1871966 | Zbl 1057.49032
[18] , , , Regular hypersurfaces, intrinsic perimeter and Implicit Function Theorem in Carnot groups, Commun. Anal. Geom. 11 (2003), 909 -944 | MR 2032504 | Zbl 1077.22008
[19] , , , Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), 152 -203 | MR 2313532 | Zbl 1125.28002
[20] , , , Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal. 21 (2011), 1044 -1084 | MR 2836591 | Zbl 1234.22002
[21] , Carnot–Carathéodory spaces seen from within, , (ed.), Subriemannian Geometry, Prog. Math. vol. 144 , Birkhäuser Verlag, Basel (1996) | MR 1421823
[22] , Ordinary Differential Equations, Class. Appl. Math. vol. 38 , SIAM (2002) | MR 1929104 | Zbl 0125.32102
[23] , Contributions à la théorie des ensembles boreliens et analytiques II and III, J. Fac. Sci., Hokkaido Univ. 8 (1939–1940), 79 -108 | MR 1818
[24] , , Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Sc. Norm. Super. Pisa, Cl. Sci. III (2004), 871 -896 | Numdam | MR 2124590 | Zbl 1170.28300
[25] , A Tour of Sub-Riemannian Geometries, their Geodesics and Applications, AMS, Providence (2002) | MR 1867362
[26] , Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math. 129 (1989), 1 -60 | MR 979599 | Zbl 0678.53042
[27] , A Course on Borel Sets, Grad. Texts Math. vol. 180 , Springer (1998) | MR 1619545 | Zbl 0903.28001
[28] , Submanifolds in Carnot Groups, Birkhäuser (2008) | MR 2791902 | Zbl 1142.53046