We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation , where w is a bounded measurable function.
@article{AIHPC_2015__32_5_925_0, author = {Bigolin, F. and Caravenna, L. and Serra Cassano, F.}, title = {Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {32}, year = {2015}, pages = {925-963}, doi = {10.1016/j.anihpc.2014.05.001}, mrnumber = {3400438}, zbl = {1331.35089}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_5_925_0} }
Bigolin, F.; Caravenna, L.; Serra Cassano, F. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 925-963. doi : 10.1016/j.anihpc.2014.05.001. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_5_925_0/
[1] G. Alberti, S. Bianchini, L. Caravenna, Eulerian Lagrangian and Broad continuous solutions to a balance law with non-convex flux, forthcoming. | MR 3537830
[2] Reduction on characteristics for continuous solution of a scalar balance law, Hyperbolic Problems: Theory, Numerics, Applications (2014), http://aimsciences.org/books/am/AMVol8.html | Zbl 06620922
, , ,[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Oxford (2000) | MR 1857292 | Zbl 0957.49001
, , ,[4] Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 no. 2 (2006), 187 -232 | MR 2223801 | Zbl 1085.49045
, , ,[5] Intrinsic Regular Hypersurfaces and PDEs, the Case of the Heisenberg Group, LAP Lambert Academic Publishing (2010)
,[6] Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var. 3 (2010), 69 -97 | MR 2604618 | Zbl 1188.53027
, ,[7] Distributional solutions of Burgers' equation and Intrinsic regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), 561 -568 | MR 2600502 | Zbl 1186.35030
, ,[8] An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Prog. Math. vol. 259 , Birkhäuser (2007) | MR 2312336 | Zbl 1138.53003
, , , ,[9] Differentiating maps into and the geometry of BV functions, Ann. Math. (2) 171 no. 2 (2006), 1347 -1385 | MR 2630066 | Zbl 1194.22009
, ,[10] Implicit function theorem in Carnot–Carathéodory spaces, Commun. Contemp. Math. 8 no. 5 (2006), 657 -680 | MR 2263950 | Zbl 1160.53017
, ,[11] Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ. 49 (2014), 1279 -1308 | MR 3168633 | Zbl 1291.22011
, , , ,[12] Measure Theory, Birkhäuser (1980) | MR 578344
,[13] The flow associated to weakly differentiable vector fields, Publ. Sc. Norm. Super. vol. 12 , Birkhäuser (2009) | MR 2512801 | Zbl 1178.35134
,[14] Lagrangian flows and the one dimensional Peano phenomenon for ODEs, J. Differ. Equ. 250 no. 7 (2011), 3135 -3149 | MR 2771257 | Zbl 1218.34008
,[15] Continuous solutions for balance laws, Ric. Mat. 55 (2006), 79 -91 | MR 2248164 | Zbl 1220.35094
,[16] Modern Geometry—Methods and Applications—Part III, Grad. Texts Math. vol. 124 , Springer-Verlag, New York (1990) | MR 1076994 | Zbl 0703.55001
, , ,[17] Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479 -531 | MR 1871966 | Zbl 1057.49032
, , ,[18] Regular hypersurfaces, intrinsic perimeter and Implicit Function Theorem in Carnot groups, Commun. Anal. Geom. 11 (2003), 909 -944 | MR 2032504 | Zbl 1077.22008
, , ,[19] Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), 152 -203 | MR 2313532 | Zbl 1125.28002
, , ,[20] Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal. 21 (2011), 1044 -1084 | MR 2836591 | Zbl 1234.22002
, , ,[21] Carnot–Carathéodory spaces seen from within, , (ed.), Subriemannian Geometry, Prog. Math. vol. 144 , Birkhäuser Verlag, Basel (1996) | MR 1421823
,[22] Ordinary Differential Equations, Class. Appl. Math. vol. 38 , SIAM (2002) | MR 1929104 | Zbl 0125.32102
,[23] Contributions à la théorie des ensembles boreliens et analytiques II and III, J. Fac. Sci., Hokkaido Univ. 8 (1939–1940), 79 -108 | MR 1818
,[24] Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Sc. Norm. Super. Pisa, Cl. Sci. III (2004), 871 -896 | Numdam | MR 2124590 | Zbl 1170.28300
, ,[25] A Tour of Sub-Riemannian Geometries, their Geodesics and Applications, AMS, Providence (2002) | MR 1867362
,[26] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math. 129 (1989), 1 -60 | MR 979599 | Zbl 0678.53042
,[27] A Course on Borel Sets, Grad. Texts Math. vol. 180 , Springer (1998) | MR 1619545 | Zbl 0903.28001
,[28] Submanifolds in Carnot Groups, Birkhäuser (2008) | MR 2791902 | Zbl 1142.53046
,