The two-species Vlasov–Maxwell–Landau system in 3
Wang, Yanjin
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 1099-1123 / Harvested from Numdam

We consider the global classical solutions near the Maxwellians to the two-species Vlasov–Maxwell–Landau system in the whole space. It is shown that the cancelation properties between two species coupled with the electric effect yield the faster time decay of the electric field, which leads to our construction of global solutions.

Publié le : 2015-01-01
DOI : https://doi.org/10.1016/j.anihpc.2014.05.005
Classification:  82C40,  82D05,  82D10,  35B40
@article{AIHPC_2015__32_5_1099_0,
     author = {Wang, Yanjin},
     title = {The two-species Vlasov--Maxwell--Landau system in $ {\mathbb{R}}^{3}$
      },
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {1099-1123},
     doi = {10.1016/j.anihpc.2014.05.005},
     mrnumber = {3400443},
     zbl = {1342.82118},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_5_1099_0}
}
Wang, Yanjin. The two-species Vlasov–Maxwell–Landau system in $ {\mathbb{R}}^{3}$
      . Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 1099-1123. doi : 10.1016/j.anihpc.2014.05.005. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_5_1099_0/

[1] P. Degond, M. Lemou, Dispersion relations for the linearized Fokker–Planck equation, Arch. Ration. Mech. Anal. 138 no. 2 (1997), 137 -167 | MR 1463805 | Zbl 0888.35084

[2] R.J. Duan, Global smooth dynamics of a fully ionized plasma with long-range collisions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire (2013), http://dx.doi.org/10.1016/j.anihpc.2013.07.004 | Numdam | MR 3249812

[3] R.J. Duan, R.M. Strain, Optimal large-time behavior of the Vlasov–Maxwell–Boltzmann system in the whole space, Commun. Pure Appl. Math. 24 no. 11 (2011), 1497 -1546 | MR 2832167 | Zbl 1244.35010

[4] R.J. Duan, T. Yang, H.J. Zhao, Global solutions to the Vlasov–Poisson–Landau system, arXiv:1112.3261v1

[5] R.J. Duan, T. Yang, H.J. Zhao, The Vlasov–Poisson–Boltzmann system in the whole space: the hard potential case, J. Differ. Equ. 252 no. 12 (2012), 6356 -6386 | MR 2911838 | Zbl 1247.35174

[6] R.J. Duan, T. Yang, H.J. Zhao, The Vlasov–Poisson–Boltzmann system for soft potentials, Math. Models Methods Appl. Sci. 23 no. 6 (2013), 979 -1028 | MR 3037299 | Zbl 06183379

[7] R.J. Duan, S.Q. Liu, T. Yang, H.J. Zhao, Stability of the nonrelativistic Vlasov–Maxwell–Boltzmann system for angular non-cutoff potentials, Kinet. Relat. Models 6 no. 1 (2013), 159 -204 | MR 3005626 | Zbl 1288.35476

[8] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Prentice Hall (2004) | MR 2449250 | Zbl 1148.42001

[9] Y. Guo, The Landau equation in a periodic box, Commun. Math. Phys. 231 no. 3 (2002), 391 -434 | MR 1946444 | Zbl 1042.76053

[10] Y. Guo, The Vlasov–Maxwell–Boltzmann system near Maxwellians, Invent. Math. 153 no. 3 (2003), 593 -630 | MR 2000470 | Zbl 1029.82034

[11] Y. Guo, The Vlasov–Poisson–Landau system in a periodic box, J. Am. Math. Soc. 25 no. 3 (2012), 759 -812 | MR 2904573 | Zbl 1251.35167

[12] F. Hilton, Collisional transport in plasma, Handbook of Plasma Physics, vol. I: Basic Plasma Physics, North-Holland, Amsterdam (1983)

[13] T. Hosono, S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Methods Appl. Sci. 16 no. 11 (2006), 1839 -1859 | MR 2271601 | Zbl 1108.35014

[14] N. Ju, Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space, Commun. Math. Phys. 251 no. 2 (2004), 365 -376 | MR 2100059 | Zbl 1106.35061

[15] R.M. Strain, The Vlasov–Maxwell–Boltzmann system in the whole space, Commun. Math. Phys. 268 no. 2 (2006), 543 -567 | MR 2259206 | Zbl 1129.35022

[16] R.M. Strain, Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Commun. Math. Phys. 251 no. 2 (2004), 263 -320 | MR 2100057 | Zbl 1113.82070

[17] R.M. Strain, Y. Guo, Almost exponential decay near Maxwellian, Commun. Partial Differ. Equ. 31 no. 1–3 (2006), 417 -429 | MR 2209761 | Zbl 1096.82010

[18] R.M. Strain, Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 no. 2 (2008), 287 -339 | MR 2366140 | Zbl 1130.76069

[19] R.M. Strain, K. Zhu, The Vlasov–Poisson–Landau system in x 3 , Arch. Ration. Mech. Anal. 210 no. 2 (2013), 615 -671 | MR 3101794 | Zbl 1294.35168

[20] Y.J. Wang, Golobal solution and time decay of the Vlasov–Poisson–Landau system in 3 , SIAM J. Math. Anal. 44 no. 5 (2012), 3281 -3323 | MR 3023411 | Zbl 1263.82044