Critical travelling waves for general heterogeneous one-dimensional reaction–diffusion equations
Nadin, Grégoire
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 841-873 / Harvested from Numdam

This paper investigates time-global wave-like solutions of heterogeneous reaction–diffusion equations: t u-a(x) xx u-b(x) x u=f(x,u) in ×, where the coefficients a, a x , a xx , 1/a, b, b x and f are only assumed to be measurable and bounded in x and the nonlinearity f is Lipschitz-continuous in u[0,1], with f(x,0)=f(x,1)=0 for all x. In this general framework, the notion of spatial transition wave has been introduced by Berestycki and Hamel [4]. Such waves always exist for one-dimensional ignition-type equations [22,27], but not for monostable ones [26]. We introduce in the present paper a new notion of wave-like solutions, called critical travelling waves since their definition relies on a geometrical comparison in the class of time-global solutions trapped between 0 and 1. Critical travelling waves always exist, whatever the nonlinearity of the equation is, are monotonic in time and unique up to normalization. They are spatial transition waves if such waves exist. Moreover, if the equation is of monostable type, for example if b0 and f(x,u)=c(x)u(1-u), with inf c>0, then critical travelling waves have minimum least mean speed. If the coefficients are homogeneous/periodic, then we recover the classical notion of planar/pulsating travelling wave. If the heterogeneity of the coefficients is compactly supported, then critical transition waves are either a spatial transition wave with minimal global mean speed or bump-like solutions if spatial transition does not exist. In the bistable framework, the nature of the critical travelling waves depends on the existence of non-trivial steady states. Hence, the notion of critical travelling wave provides a unifying framework to earlier scattered existence results for wave-like solutions. We conclude by proving that in the monostable framework, critical travelling waves attract, in a sense and under additional assumptions, the solution of the Cauchy problem associated with a Heaviside initial datum.

Publié le : 2015-01-01
DOI : https://doi.org/10.1016/j.anihpc.2014.03.007
Classification:  35B08,  35B40,  35B50,  35C07,  35K57
@article{AIHPC_2015__32_4_841_0,
     author = {Nadin, Gr\'egoire},
     title = {Critical travelling waves for general heterogeneous one-dimensional reaction--diffusion equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {841-873},
     doi = {10.1016/j.anihpc.2014.03.007},
     mrnumber = {3390087},
     zbl = {06477003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_4_841_0}
}
Nadin, Grégoire. Critical travelling waves for general heterogeneous one-dimensional reaction–diffusion equations. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 841-873. doi : 10.1016/j.anihpc.2014.03.007. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_4_841_0/

[1] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79 -96 | MR 953678 | Zbl 0644.35050

[2] D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math. 30 (1978), 33 -76 | MR 511740 | Zbl 0407.92014

[3] H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Commun. Pure Appl. Math. 55 (2002), 949 -1032 | MR 1900178 | Zbl 1024.37054

[4] H. Berestycki, F. Hamel, Generalized travelling waves for reaction–diffusion equations, Perspectives in Nonlinear Partial Differential Equations. In Honor of H. Brezis, Contemp. Math. vol. 446 , Amer. Math. Soc. (2007), 101 -123 | Zbl 1200.35169

[5] H. Berestycki, F. Hamel, Generalized transition waves and their properties, Commun. Pure Appl. Math. 65 (2012), 592 -648 | MR 2898886 | Zbl 1248.35039

[6] H. Berestycki, F. Hamel, H. Matano, Bistable travelling waves around an obstacle, Commun. Pure Appl. Math. 62 (2009), 729 -788 | MR 2512611 | Zbl 1172.35031

[7] H. Berestycki, F. Hamel, L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl. 186 (2007), 469 -507 | MR 2317650 | Zbl 1223.35022

[8] G. Chapuisat, E. Grenier, Existence and nonexistence of traveling wave solutions for a bistable reaction–diffusion equation in an infinite cylinder whose diameter is suddenly increased, Commun. Partial Differ. Equ. 30 (2005), 1805 -1816 | MR 2182312 | Zbl 1087.35052

[9] A. Ducrot, T. Giletti, H. Matano, Existence and convergence to a propagating terrace in one-dimensional reaction–diffusion equations, Trans. Am. Math. Soc. (2014), http://dx.doi.org/10.1090/S0002-9947-2014-06105-9 | MR 3240934 | Zbl 1302.35209

[10] J. Fang, X.-Q. Zhao, Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc. (2014) | MR 3420507

[11] P.C. Fife, J.B. Mcleod, The approach of solutions of nonlinear diffusion equations by travelling front solutions, Arch. Ration. Mech. Anal. 65 (1977), 335 -361 | MR 442480 | Zbl 0361.35035

[12] R.A. Fisher, The advance of advantageous genes, Annu. Eugen. 7 (1937), 335 -369 | JFM 63.1111.04

[13] T. Giletti, Convergence to pulsating traveling waves with minimal speed in some KPP heterogeneous problems, Calc. Var. Partial Differ. Equ. (2014), http://dx.doi.org/10.1007/s00526-013-0674-9 | MR 3247389 | Zbl 1316.35153

[14] F. Hamel, Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity, J. Math. Pures Appl. 89 (2008), 355 -399 | MR 2401143 | Zbl 1171.35061

[15] F. Hamel, N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in N , Arch. Ration. Mech. Anal. 157 (2001), 91 -163 | MR 1830037 | Zbl 0987.35072

[16] S. Heinze, Wave solutions for reaction–diffusion systems in perforated domains, Z. Anal. Anwend. 20 (2001), 661 -670 | MR 1863939 | Zbl 0986.35051

[17] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov, Etude de l équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Etat. Moscou (1937), 1 -26

[18] N.V. Krylov, M.V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR, Izv. 16 (1981), 151 -164 | Zbl 0464.35035

[19] J. Lewis, J.P. Keener, Wave-block in excitable media due to regions of depressed excitability, SIAM J. Appl. Math. 61 (2000), 293 -316 | MR 1776397 | Zbl 0967.35067

[20] H. Matano, Traveling waves in spatially inhomogeneous diffusive media, Oral communications.

[21] A. Mellet, J. Nolen, J.-M. Roquejoffre, L. Ryzhik, Stability of generalized transition fronts, Commun. Partial Differ. Equ. 34 (2009), 521 -552 | MR 2530708 | Zbl 1173.35021

[22] A. Mellet, J.-M. Roquejoffre, Y. Sire, Existence of generalized transition fronts in reaction–diffusion equations, Discrete Contin. Dyn. Syst., Ser. A 26 (2010), 303 -312 | MR 2552789 | Zbl 1180.35294

[23] G. Nadin, Traveling fronts in space–time periodic media, J. Math. Pures Appl. 92 (2009), 232 -262 | MR 2555178 | Zbl 1182.35074

[24] G. Nadin, L. Rossi, Propagation phenomenas for time heterogeneous KPP reaction–diffusion equations, J. Math. Pures Appl. 98 (2012), 633 -653 | MR 2994696 | Zbl 06115427

[25] G. Nadin, L. Rossi, Transition waves for Fisher-KPP equations with general time-heterogeneous and space-periodic coefficients, preprint. | MR 3397000

[26] J. Nolen, J.-M. Roquejoffre, L. Ryzhik, A. Zlatos, Existence and non-existence of Fisher-KPP transition fronts, Arch. Ration. Mech. Anal. 203 (2012), 217 -246 | MR 2864411 | Zbl 1267.35108

[27] J. Nolen, L. Ryzhik, Traveling waves in a one-dimensional random medium, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1021 -1047 | Numdam | MR 2526414 | Zbl 1178.35205

[28] J.P. Pauwelussen, Nerve impulse propagation in a branching nerve system: a simple model, Phys. D 4 (1981), 67 -88 | MR 636471 | Zbl 1194.37181

[29] L. Rossi, L. Ryzhik, Transition waves for a class of space–time dependent monostable equations, Commun. Math. Sci. (2014) | MR 3187783 | Zbl 1305.35092

[30] W. Shen, Traveling waves in diffusive random media, J. Dyn. Differ. Equ. 16 (2004), 1011 -1060 | MR 2110054 | Zbl 1082.35081

[31] W. Shen, Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations, J. Dyn. Differ. Equ. 23 (2011), 1 -44 | MR 2772198 | Zbl 1223.35103

[32] N. Shigesada, K. Kawasaki, E. Teramoto, Traveling periodic waves in heterogeneous environments, Theor. Popul. Biol. 30 (1986), 143 -160 | MR 850456 | Zbl 0591.92026

[33] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ. 18 (1978), 453 -508 | MR 509494 | Zbl 0408.35053

[34] J. Xin, Existence of planar flame fronts in convective–diffusive periodic media, Arch. Ration. Mech. Anal. 121 (1992), 205 -233 | MR 1188981 | Zbl 0764.76074

[35] J. Xin, Existence and nonexistence of traveling waves and reaction–diffusion front propagation in periodic media, J. Stat. Phys. 73 (1993), 893 -926 | MR 1251222 | Zbl 1102.35340

[36] A. Zlatos, Generalized travelling waves in disordered media: existence, uniqueness, and stability, Arch. Ration. Mech. Anal. 208 (2013), 447 -480 | MR 3035984 | Zbl 1270.35173

[37] A. Zlatos, Transition fronts in inhomogeneous Fisher-KPP reaction–diffusion equations, J. Math. Pures Appl. 98 (2012), 89 -102 | MR 2935371 | Zbl 1252.35110

[38] A. Zlatos, Propagation of reaction in inhomogeneous media, preprint.