In this paper, we consider the global wellposedness of 3-D incompressible inhomogeneous Navier–Stokes equations with initial data slowly varying in the vertical variable, that is, initial data of the form for some and ε being sufficiently small. We remark that initial data of this type does not satisfy the smallness conditions in [11,18] no matter how small ε is.
@article{AIHPC_2015__32_4_813_0, author = {Paicu, Marius and Zhang, Ping}, title = {On some large global solutions to 3-D density-dependent Navier--Stokes system with slow variable: Well-prepared data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {32}, year = {2015}, pages = {813-832}, doi = {10.1016/j.anihpc.2014.03.006}, mrnumber = {3390085}, zbl = {1326.35247}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_4_813_0} }
Paicu, Marius; Zhang, Ping. On some large global solutions to 3-D density-dependent Navier–Stokes system with slow variable: Well-prepared data. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 813-832. doi : 10.1016/j.anihpc.2014.03.006. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_4_813_0/
[1] Équation de Navier–Stokes avec densité et viscosité variables dans l'espace critique, Rev. Mat. Iberoam. 23 no. 2 (2007), 537 -586 | MR 2371437
,[2] Existence globale pour un fluide inhomogéne, Ann. Inst. Fourier (Grenoble) 57 (2007), 883 -917 | Numdam | MR 2336833 | Zbl 1122.35091
, ,[3] On the decay and stability to global solutions of the 3-D inhomogeneous Navier–Stokes equations, Commun. Pure Appl. Math. 64 (2011), 832 -881 | MR 2663713 | Zbl 1222.35148
, , ,[4] On the wellposedness of 3-D inhomogeneous Navier–Stokes equations in the critical spaces, Arch. Ration. Mech. Anal. 204 (2012), 189 -230 | MR 2898739 | Zbl 1314.76021
, , ,[5] Wellposedness of 3-D inhomogeneous Navier–Stokes equations with highly oscillating initial velocity field, J. Math. Pures Appl. 100 (2013), 166 -203 | MR 3073212 | Zbl 1284.35302
, , ,[6] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss. vol. 343 , Springer-Verlag, Berlin, Heidelberg (2011) | MR 2768550 | Zbl 1227.35004
, , ,[7] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Super. 14 no. 4 (1981), 209 -246 | Numdam | MR 631751 | Zbl 0495.35024
,[8] Fluids with anisotropic viscosity, Modél. Math. Anal. Numér. 34 (2000), 315 -335 | Numdam | MR 1765662 | Zbl 0954.76012
, , , ,[9] Large, global solutions to the Navier–Stokes equations slowly varying in one direction, Trans. Am. Math. Soc. 362 (2010), 2859 -2873 | MR 2592939 | Zbl 1189.35220
, ,[10] Global regularity for some classes of large solutions to the Navier–Stokes equations, Ann. of Math. (2) 173 (2011), 983 -1012 | MR 2776367 | Zbl 1229.35168
, , ,[11] Global large solutions to 3-D inhomogeneous Navier–Stokes system with one slow variable, J. Differ. Equ. 256 (2014), 223 -252 | MR 3115841 | Zbl 1317.35171
, , ,[12] On the global wellposedness to the 3-D incompressible anisotropic Navier–Stokes equations, Commun. Math. Phys. 272 (2007), 529 -566 | MR 2300252 | Zbl 1132.35068
, ,[13] Density-dependent incompressible viscous fluids in critical spaces, Proc. R. Soc. Edinb. A 133 (2003), 1311 -1334 | MR 2027648 | Zbl 1050.76013
,[14] Local and global well-posedness results for flows of inhomogeneous viscous fluids, Adv. Differ. Equ. 9 (2004), 353 -386 | MR 2100632 | Zbl 1103.35085
,[15] Local theory in critical spaces for compressible viscous and heat-conducting gases, Commun. Partial Differ. Equ. 26 (2001), 1183 -1233 | MR 1855277 | Zbl 1007.35071
,[16] A Lagrangian approach for the incompressible Navier–Stokes equations with variable density, Commun. Pure Appl. Math. 65 (2012), 1458 -1480 | MR 2957705 | Zbl 1247.35088
, ,[17] Large global solutions to the 3-D inhomogeneous Navier–Stokes equations, J. Funct. Anal. 261 (2011), 3181 -3210 | MR 2835995 | Zbl 1229.35180
, , ,[18] Global wellposedness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity, Arch. Ration. Mech. Anal. 209 (2013), 631 -682 | MR 3056619 | Zbl 1287.35055
, , ,[19] The unique solvability of an initial–boundary value problem for viscous incompressible inhomogeneous fluids, Boundary Value Problems of Mathematical Physics, and Related Questions of the Theory of Functions, vol. 8 Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52 (1975), 52 -109 | MR 425391 | Zbl 0376.76021
, ,[20] Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Ser. Math. Appl. vol. 3 , Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1996) | Zbl 0866.76002
,[21] Équation anisotrope de Navier–Stokes dans des espaces critiques, Rev. Mat. Iberoam. 21 (2005), 179 -235 | MR 2155019
,[22] Global solutions to the 3-D incompressible anisotropic Navier–Stokes system in the critical spaces, Commun. Math. Phys. 307 (2011), 713 -759 | MR 2842964 | Zbl 1237.35129
, ,[23] Global solutions to the 3-D incompressible inhomogeneous Navier–Stokes system, J. Funct. Anal. 262 (2012), 3556 -3584 | MR 2889168 | Zbl 1236.35112
, ,[24] Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal. 21 no. 5 (1990), 1093 -1117 | MR 1062395 | Zbl 0702.76039
,