Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum
Morimoto, Yoshinori ; Yang, Tong
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 429-442 / Harvested from Numdam

Nous justifions l'effet régularisant pour les solutions à valeurs mesures de l'équation de Boltzmann spatialement homogène dans le cas des molécules maxwelliennes. Il s'agit de la première preuve rigoureuse de l'effet régularisant pour toutes données initiales à valeurs mesures sauf la masse de Dirac seule, ce qui donne la description optimale de la regularité des solutions en temps positif à causée par la singularité dans le noyau de collision. Le principal ingrédient nouveau dans la preuve est l'introduction d'unc inégalité de coercivité dégénérée par rapport au temps en utilisant l'analyse microlocale.

We justify the smoothing effect for measure valued solutions to the space homogeneous Boltzmann equation of Maxwellian type cross sections. This is the first rigorous proof of the smoothing effect for any measure valued initial data except the single Dirac mass, which gives the optimal description on the regularity of solutions for positive time, caused by the singularity in the cross section. The main new ingredient in the proof is the introduction of a time degenerate coercivity estimate by using the microlocal analysis.

Publié le : 2015-01-01
DOI : https://doi.org/10.1016/j.anihpc.2013.12.004
Classification:  35Q20,  76P05,  35H20,  82B40,  82C40
@article{AIHPC_2015__32_2_429_0,
     author = {Morimoto, Yoshinori and Yang, Tong},
     title = {Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {429-442},
     doi = {10.1016/j.anihpc.2013.12.004},
     zbl = {1321.35125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_2_429_0}
}
Morimoto, Yoshinori; Yang, Tong. Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 429-442. doi : 10.1016/j.anihpc.2013.12.004. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_2_429_0/

[1] R. Alexandre, L. Desvillettes, C. Villani, B. Wennberg, Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal. 152 (2000), 327 -355 | Zbl 0968.76076

[2] R. Alexandre, M. Elsafadi, Littlewood Paley decomposition and regularity issues in Boltzmann homogeneous equations. I. Non cutoff and Maxwell cases, Math. Models Methods Appl. Sci. 15 (2005), 907 -920

[3] R. Alexandre, M. Elsafadi, Littlewood–Paley theory and regularity issues in Boltzmann homogeneous equations. II. Non cutoff case and non Maxwellian molecules, Discrete Contin. Dyn. Syst. 24 (2009), 1 -11 | Zbl 1168.35326

[4] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff, Kyoto J. Math. 52 (2012), 433 -463 | Zbl 1247.35085

[5] L. Arkeryd, On the Boltzmann equation, Arch. Ration. Mech. Anal. 34 (1972), 1 -34

[6] M. Cannone, G. Karch, Infinite energy solutions to the homogeneous Boltzmann equation, Commun. Pure Appl. Math. 63 (2010), 747 -778 | Zbl 1205.35180

[7] T. Carleman, Sur la théorie de l'équation intégrodifférentielle de Boltzmann, Acta Math. 60 (1933), 91 -146 | JFM 59.0404.02

[8] Y. Chen, L. He, Smoothing estimates for Boltzmann equation with full-range interactions: Spatially homogeneous case, Arch. Ration. Mech. Anal. 201 (2011), 501 -548 | Zbl 1318.76018

[9] L. Desvillettes, B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Commun. Partial Differ. Equ. 29 (2004), 133 -155 | Zbl 1103.82020

[10] Z.H. Huo, Y. Morimoto, S. Ukai, T. Yang, Regularity of solutions for spatially homogeneous Boltzmann equation without Angular cutoff, Kinet. Relat. Models 1 (2008), 453 -489 | Zbl 1158.35332

[11] N. Jacob, Pseudo-Differential Operators and Markov Processes. Vol 1: Fourier Analysis and Semigroups, Imperial College Press, London (2001) | Zbl 0987.60003

[12] X. Lu, C. Mouhot, On measure solutions of the Boltzmann equation, part I: Moment production and stability estimates, J. Differ. Equ. 252 (2012), 3305 -3363 | Zbl 1234.35175

[13] X. Lu, B. Wennberg, Solutions with increasing energy for the spatially homogeneous Boltzmann equation, Nonlinear Anal., Real World Appl. 3 (2002), 243 -258 | Zbl 1018.82015

[14] Y. Morimoto, A remark on Cannone–Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules, Kinet. Relat. Models 5 (2012), 551 -561 | Zbl 1255.35177

[15] Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst., Ser. A 24 (2009), 187 -212 | Zbl 1169.35315

[16] Y. Morimoto, S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff, J. Pseudo-Differ. Oper. Appl. 1 (2010), 139 -159 | Zbl 1207.35015

[17] A. Pulvirenti, G. Toscani, The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation, Ann. Mat. Pura Appl. 171 (1996), 181 -204 | Zbl 0874.45005

[18] H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrscheinlichkeitstheor. Verw. Geb. 46 (1978), 67 -105 | Zbl 0389.60079

[19] G. Toscani, C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equations for Maxwell gas, J. Stat. Phys. 94 (1999), 619 -637 | Zbl 0958.82044

[20] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Ration. Mech. Anal. 143 (1998), 273 -307 | Zbl 0912.45011

[21] C. Villani, A review of mathematical topics in collisional kinetic theory, S. Friedlander, D. Serre (ed.), Handbook of Fluid Mathematical Fluid Dynamics, Elsevier Science (2002) | Zbl 1170.82369

[22] C. Villani, August 2008, Kyoto, private communication.