In this paper we study compactness and quantization properties of sequences of 1/2-harmonic maps such that . More precisely we show that there exist a weak 1/2-harmonic map , a finite and possible empty set such that up to subsequences as , with .The convergence of to is strong in , for every . We quantify the loss of energy in the weak convergence and we show that in the case of non-constant 1/2-harmonic maps with values in one has , with a positive integer.
@article{AIHPC_2015__32_1_201_0,
author = {Da Lio, Francesca},
title = {Compactness and bubble analysis for 1/2-harmonic maps},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {32},
year = {2015},
pages = {201-224},
doi = {10.1016/j.anihpc.2013.11.003},
mrnumber = {3303947},
zbl = {1310.58011},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_1_201_0}
}
Da Lio, Francesca. Compactness and bubble analysis for 1/2-harmonic maps. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 201-224. doi : 10.1016/j.anihpc.2013.11.003. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_1_201_0/
[1] , , Function Spaces and Potential Theory, Springer, Berlin (1996) | MR 1411441
[2] , , The Willmore functional on complete minimal surfaces in H3: boundary regularity and bubbling, arXiv:1204.4955v2 | Zbl 1335.53076
[3] , , Energy quantization for Willmore surfaces and applications, arXiv:1106.3780 (2011) | MR 3194812
[4] , Cours d'analyse, Éditions de l'École polytechnique (2011)
[5] , , , Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611 -635 | MR 412721 | Zbl 0326.32011
[6] , Fractional harmonic maps into manifolds in odd dimension , Calc. Var. Partial Differ. Equ. 48 no. 3–4 (2013), 421 -445 | MR 3116017 | Zbl 1281.58007
[7] F. Da Lio, Habilitation thesis, in preparation.
[8] F. Da Lio, in preparation.
[9] , , 3-commutators estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE 4 no. 1 (2011), 149 -190 , http://dx.doi.org/10.2140/apde.2011.4.149 | Zbl 1241.35035
[10] , , Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to 1/2-harmonic maps, Adv. Math. 227 (2011), 1300 -1348 | MR 2799607 | Zbl 1219.58004
[11] F. Da Lio, T. Riviere, Fractional harmonic maps and free boundaries problems, in preparation.
[12] , , -harmonic maps: regularity for the sphere case, Adv. Calc. Var. (2012), http://dx.doi.org/10.1515/acv-2012-0107, arXiv:1202.1151v1 | Zbl 1281.49034
[13] , , Measure Theory and Fine Properties of Functions, Stud. Adv. Math. , CRC Press, Boca Raton, FL (1992) | MR 1158660 | Zbl 0626.49007
[14] , , The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 no. 5 (2011), 4011 -4030 | MR 2770439 | Zbl 1215.53052
[15] , , Eigenvalue bounds and minimal surfaces in the ball, arXiv:1209.3789 | Zbl 1337.35099
[16] , Classical Fourier Analysis, Grad. Texts Math. vol. 249 , Springer (2009) | MR 2445437
[17] , Modern Fourier Analysis, Grad. Texts Math. vol. 250 , Springer (2009) | MR 2463316 | Zbl 1158.42001
[18] , , Angular energy quantization for linear elliptic systems with antisymmetric potentials and applications, Anal. PDE (2014), arXiv:1109.3599 (2011) | MR 3219498 | Zbl 1295.35204
[19] , , Energy quantization for biharmonic maps, Adv. Calc. Var. 6 no. 2 (2013), 191 -216 | MR 3043576 | Zbl 1275.35098
[20] , , Quantization property for moving Line vortices, Commun. Pure Appl. Math. 54 (2001), 826 -850 | MR 1823421 | Zbl 1029.35127
[21] , Bubbling, quantization and regularity issues in geometric non-linear analysis, ICM, Beijing (2002) | MR 1957532 | Zbl 1136.35334
[22] , , Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin (1996) | MR 1419319 | Zbl 0873.35001
[23] , Regularity of harmonic maps into spheres, J. Differ. Equ. 252 (2012), 1862 -1911 | MR 2853564 | Zbl 1237.58018
[24] A. Schikorra, Epsilon-regularity for systems involving non-local, antisymmetric operators, preprint. | MR 3426086
[25] , An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318 -344 | MR 243467 | Zbl 0181.11501