Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces
Farina, Alberto ; Montoro, Luigi ; Riey, Giuseppe ; Sciunzi, Berardino
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015), p. 1-22 / Harvested from Numdam

We consider a quasilinear elliptic equation involving a first-order term, under zero Dirichlet boundary condition in half-spaces. We prove that any positive solution is monotone increasing with respect to the direction orthogonal to the boundary. The main ingredient in the proof is a new comparison principle in unbounded domains. As a consequence of our analysis, we also obtain some new Liouville type theorems.

Publié le : 2015-01-01
DOI : https://doi.org/10.1016/j.anihpc.2013.09.005
Classification:  35B05,  35B65,  35J70
@article{AIHPC_2015__32_1_1_0,
     author = {Farina, Alberto and Montoro, Luigi and Riey, Giuseppe and Sciunzi, Berardino},
     title = {Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {32},
     year = {2015},
     pages = {1-22},
     doi = {10.1016/j.anihpc.2013.09.005},
     mrnumber = {3303939},
     zbl = {1319.35051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_1_1_0}
}
Farina, Alberto; Montoro, Luigi; Riey, Giuseppe; Sciunzi, Berardino. Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 1-22. doi : 10.1016/j.anihpc.2013.09.005. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_1_1_0/

[1] A.D. Alexandrov, A characteristic property of the spheres, Ann. Mat. Pura Appl. 58 (1962), 303 -354 | MR 143162

[2] H. Berestycki, L.A. Caffarelli, L. Nirenberg, Symmetry for elliptic equations in a half space, J.L. Lions, et al. (ed.), Boundary Value Problems for PDEs and Applications, Masson, Paris (1993), 27 -42 | MR 1260436 | Zbl 0793.35034

[3] H. Berestycki, L. Caffarelli, L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains, Duke Math. J. 81 no. 2 (1996), 467 -494 | MR 1395408 | Zbl 0860.35004

[4] H. Berestycki, L. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 25 no. 1–2 (1997), 69 -94 | Numdam | MR 1655510 | Zbl 1079.35513

[5] H. Berestycki, L. Caffarelli, L. Nirenberg, Monotonicity for elliptic equations in an unbounded Lipschitz domain, Commun. Pure Appl. Math. 50 (1997), 1089 -1111 | MR 1470317 | Zbl 0906.35035

[6] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. Nova Ser. 22 no. 1 (1991), 1 -37 | MR 1159383 | Zbl 0784.35025

[7] F. Charro, L. Montoro, B. Sciunzi, Monotonicity of solutions of Fully nonlinear uniformly elliptic equations in the half-plane, J. Differ. Equ. 251 no. 6 (2011), 1562 -1579 | MR 2813890 | Zbl 1225.35086

[8] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 no. 4 (1998), 493 -516 | Numdam | MR 1632933 | Zbl 0911.35009

[9] L. Damascelli, F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoam. 20 no. 1 (2004), 67 -86 | MR 2076772 | Zbl 1330.35146

[10] L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for m-Laplace equations of Lane–Emden–Fowler type, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 no. 4 (2009), 1099 -1119 | Numdam | MR 2542716 | Zbl 1172.35405

[11] L. Damascelli, F. Pacella, Monotonicity and symmetry of solutions of p-Laplace equations, 1<p<2, via the moving plane method, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 26 no. 4 (1998), 689 -707 | Numdam | MR 1648566 | Zbl 0930.35070

[12] L. Damascelli, B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differ. Equ. 206 no. 2 (2004), 483 -515 | MR 2096703 | Zbl 1108.35069

[13] L. Damascelli, B. Sciunzi, Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations, Calc. Var. Partial Differ. Equ. 25 no. 2 (2006), 139 -159 | MR 2188744 | Zbl 1331.35130

[14] L. Damascelli, B. Sciunzi, Monotonicity of the solutions of some quasilinear elliptic equations in the half-plane, and applications, Differ. Integral Equ. 23 no. 5–6 (2010), 419 -434 | MR 2654242 | Zbl 1240.35208

[15] E.N. Dancer, Some notes on the method of moving planes, Bull. Aust. Math. Soc. 46 no. 3 (1992), 425 -434 | MR 1190345 | Zbl 0777.35005

[16] E.N. Dancer, Some remarks on half space problems, Discrete Contin. Dyn. Syst., Ser. A 25 no. 1 (2009), 83 -88 | MR 2525168 | Zbl 1178.35177

[17] E.N. Dancer, Y. Du, M. Efendiev, Quasilinear elliptic equations on half- and quarter-spaces, Adv. Nonlinear Stud. 13 (2013), 115 -136 | MR 3058211 | Zbl 1278.35102

[18] E. Di Benedetto, C 1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 no. 8 (1983), 827 -850 | MR 709038 | Zbl 0539.35027

[19] Y. Du, Z. Guo, Symmetry for elliptic equations in a half-space without strong maximum principle, Proc. R. Soc. Edinb., Sect. A 134 no. 2 (2004), 259 -269 | MR 2056284 | Zbl 1149.35349

[20] A. Farina, Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of N and in half spaces, Adv. Math. Sci. Appl. 13 no. 1 (2003), 65 -82 | MR 2002396 | Zbl 1078.35036

[21] A. Farina, L. Montoro, B. Sciunzi, Monotonicity and one-dimensional symmetry for solutions of -Δ p u=f(u) in half-spaces, Calc. Var. Partial Differ. Equ. 43 (2012), 123 -145 | MR 2886112 | Zbl 1246.35053

[22] A. Farina, L. Montoro, B. Sciunzi, Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces, Math. Ann. (2013), http://dx.doi.org/10.1007/s00208-013-0919-0 | MR 3118616 | Zbl 1287.35037

[23] A. Farina, B. Sciunzi, E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 7 no. 4 (2008), 741 -791 | Numdam | MR 2483642 | Zbl 1180.35251

[24] A. Farina, B. Sciunzi, E. Valdinoci, On a Poincaré type formula for solutions of singular and degenerate elliptic equations, Manuscr. Math. 132 no. 3–4 (2010), 335 -342 | MR 2652436 | Zbl 1195.35155

[25] A. Farina, E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal. 195 no. 3 (2010) | MR 2591980 | Zbl 1236.35058

[26] E. Galakhov, A comparison principle for quasilinear operators in unbounded domains, Nonlinear Anal. 70 no. 12 (2009), 4190 -4194 | MR 2514751 | Zbl 1168.35308

[27] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68 no. 3 (1979), 209 -243 | MR 544879 | Zbl 0425.35020

[28] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ. 6 (1981), 883 -901 | MR 619749 | Zbl 0462.35041

[29] T. Kilpeläinen, H. Shahgholian, X. Zhong, Growth estimates through scaling for quasilinear partial differential equations, Ann. Acad. Sci. Fenn., Math. 32 no. 2 (2007), 595 -599 | MR 2337497 | Zbl 1192.35070

[30] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968) | MR 244627 | Zbl 0164.13002

[31] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 no. 11 (1988), 1203 -1219 | MR 969499 | Zbl 0675.35042

[32] S. Merchán, L. Montoro, I. Peral, B. Sciunzi, Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy–Leray potential, Ann. Inst. Henri Poincaré, Anal. Non Linéaire (2013), http://dx.doi.org/10.1016/j.anihpc.2013.01.003 | Numdam | MR 3165277 | Zbl 1291.35082

[33] E. Mitidieri, S.I. Pokhozhaev, The absence of positive solutions for quasilinear elliptic inequalities, Dokl. Akad. Nauk 359 (1998), 456 -460 , Dokl. Math. 57 (1998), 250 -253 | MR 1668404 | Zbl 0976.35100

[34] L. Montoro, B. Sciunzi, M. Squassina, Asymptotic symmetry for a class of quasi-linear parabolic problems, Adv. Nonlinear Stud. 10 no. 4 (2010), 789 -818 | MR 2683684 | Zbl 1253.35009

[35] P. Pucci, J. Serrin, The Maximum Principle, Birkhäuser, Boston (2007) | MR 2356201 | Zbl 1134.35001

[36] A. Quaas, B. Sirakov, Existence results for nonproper elliptic equations involving the Pucci operator, Commun. Partial Differ. Equ. 31 no. 7–9 (2006), 987 -1003 | MR 2254600 | Zbl 1237.35056

[37] O. Savin, E. Valdinoci, Some monotonicity results for minimizers in the calculus of variations, J. Funct. Anal. 264 no. 10 (2013), 2469 -2496 | MR 3035063 | Zbl 1278.49029

[38] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 no. 4 (1971), 304 -318 | MR 333220 | Zbl 0222.31007

[39] J. Serrin, H. Zou, Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 no. 1 (2002), 79 -142 | MR 1946918 | Zbl 1059.35040

[40] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ. 51 no. 1 (1984), 126 -150 | MR 727034 | Zbl 0488.35017

[41] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 no. 3 (1984), 191 -202 | MR 768629 | Zbl 0561.35003

[42] H.H. Zou, A priori estimates and existence for quasi-linear elliptic equations, Calc. Var. Partial Differ. Equ. 33 no. 4 (2008), 417 -437 | MR 2438741 | Zbl 1169.35336