We investigate the influence of a perforated domain on the 2D Euler equations. Small inclusions of size ε are uniformly distributed on the unit segment or a rectangle, and the fluid fills the exterior. These inclusions are at least separated by a distance and we prove that for α small enough (namely, less than 2 in the case of the segment, and less than 1 in the case of the square), the limit behavior of the ideal fluid does not feel the effect of the perforated domain at leading order when .
@article{AIHPC_2015__32_1_159_0, author = {Bonnaillie-No\"el, V. and Lacave, C. and Masmoudi, N.}, title = {Permeability through a perforated domain for the incompressible 2D Euler equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {32}, year = {2015}, pages = {159-182}, doi = {10.1016/j.anihpc.2013.11.002}, mrnumber = {3303945}, zbl = {1318.35070}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_1_159_0} }
Bonnaillie-Noël, V.; Lacave, C.; Masmoudi, N. Permeability through a perforated domain for the incompressible 2D Euler equations. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 159-182. doi : 10.1016/j.anihpc.2013.11.002. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_1_159_0/
[1] Lectures on Quasiconformal Mappings, Jr. Van Nostrand Math. Stud. vol. 10 , D. Van Nostrand Co., Inc., Toronto, Ont., New York, London (1966) | MR 200442 | Zbl 0138.06002
,[2] Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes, Arch. Ration. Mech. Anal. 113 no. 3 (1990), 209 -259 | MR 1079189 | Zbl 0724.76020
,[3] Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes, Arch. Ration. Mech. Anal. 113 no. 3 (1990), 261 -298 | MR 1079190 | Zbl 0724.76021
,[4] Mathematical justification of the Rayleigh conductivity model for perforated plates in acoustics, SIAM J. Appl. Math. 73 no. 1 (2013), 438 -459 | MR 3033157 | Zbl 06171242
, , , ,[5] Multiscale expansion and numerical approximation for surface defects, 40e Congrès National d'Analyse Numérique, CANUM 2010, ESAIM Proc. vol. 33 , EDP Sci., Les Ulis (2011), 22 -35 | MR 2863307 | Zbl 1302.35035
, , , , , ,[6] Interactions between moderately close circular inclusions: the Dirichlet–Laplace equation in the plane, Asymptot. Anal. 84 (2013), 197 -227 , http://dx.doi.org/10.3233/ASY-131174 | MR 3136108 | Zbl 1279.35012
, ,[7] Interactions between moderately close inclusions for the Laplace equation, Math. Models Methods Appl. Sci. 19 no. 10 (2009), 1853 -1882 | MR 2573145 | Zbl 1191.35112
, , , ,[8] Un terme étrange venu d'ailleurs, Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. II, Paris, 1979/1980, Res. Notes Math. vol. 60 , Pitman, Boston, MA (1982), 98 -138 | MR 652509 | Zbl 0496.35030
, ,[9] Numerical results in the Stokes sieve problem, Rev. Int. Métodos Numér. Cálc. Diseño Ing. 5 no. 4 (1989), 435 -452 | MR 1036224
, ,[10] Two problems in homogenization of porous media, Proceedings of the Second International Seminar on Geometry, Continua and Microstructure, vol. 14, Getafe, 1998 (1999), 141 -155 | MR 1758958 | Zbl 0942.35021
,[11] Asymptotic analysis of acoustic waves in a porous medium: initial layers in time, Commun. Math. Sci. 10 no. 1 (2012), 239 -265 | MR 2901309 | Zbl 1284.35047
, ,[12] The two-dimensional Euler equations on singular domains, Arch. Ration. Mech. Anal. 209 no. 1 (2013), 131 -170 | MR 3054600 | Zbl 1286.35200
, ,[13] Dégénérescence de la loi de Darcy pour un écoulement à travers des obstacles de petite concentration, C. R. Acad. Sci. Paris Sér. I Math. 293 no. 2 (1981), 179 -181 | MR 637121 | Zbl 0485.76072
, ,[14] Conformal and potential analysis in Hele–Shaw cells, Adv. Math. Fluid Mech. , Birkhäuser Verlag, Basel (2006) | MR 2245542 | Zbl 1122.76002
, ,[15] Euclidean quasiconvexity, Ann. Acad. Sci. Fenn. Math. 33 no. 1 (2008), 205 -230 | MR 2386847 | Zbl 1155.30012
, ,[16] Two dimensional incompressible ideal flow around a small obstacle, Commun. Partial Differ. Equ. 28 no. 1–2 (2003), 349 -379 | MR 1974460 | Zbl 1094.76007
, , ,[17] Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. Mat. Fiz. 3 (1963), 1032 -1066 | MR 158189
,[18] Exterior problem for the two-dimensional Euler equation, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 30 no. 1 (1983), 63 -92 | MR 700596 | Zbl 0517.76024
,[19] Two dimensional incompressible ideal flow around a thin obstacle tending to a curve, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 no. 4 (2009), 1121 -1148 | Numdam | MR 2542717 | Zbl 1166.76300
,[20] C. Lacave, M.C. Lopes Filho, H.J. Nussenzveig Lopes, Asymptotic behavior of 2d incompressible ideal flow around small disks, 2013, in preparation.
[21] Homogenization of the Euler system in a 2D porous medium, J. Math. Pures Appl. (9) 84 no. 1 (2005), 1 -20 | MR 2112870 | Zbl 1072.35032
, ,[22] Vortex dynamics in a two-dimensional domain with holes and the small obstacle limit, SIAM J. Math. Anal. 39 no. 2 (2007), 422 -436 | MR 2338413 | Zbl 1286.76018
,[23] Vorticity and incompressible flow, Camb. Texts Appl. Math. vol. 27 , Cambridge University Press, Cambridge (2002) | MR 1867882 | Zbl 0983.76001
, ,[24] Homogenization of the compressible Navier–Stokes equations in a porous medium, ESAIM Control Optim. Calc. Var. vol. 8 (2002), 885 -906 | Numdam | MR 1932978 | Zbl 1071.76047
,[25] Nonstationary plane flow of viscous and ideal fluids, Arch. Ration. Mech. Anal. 27 (1967), 329 -348 | MR 221818 | Zbl 0187.49508
,[26] Homogenization of nonstationary Navier–Stokes equations in a domain with a grained boundary, Ann. Mat. Pura Appl. (4) 158 (1991), 167 -179 | MR 1131849 | Zbl 0758.35007
,[27] Homogenization of the inviscid incompressible fluid flow through a 2D porous medium, Proc. Am. Math. Soc. 127 no. 7 (1999), 2019 -2028 | MR 1626446 | Zbl 0922.35136
, ,[28] Boundary behaviour of conformal maps, Grundlehren Math. Wiss. vol. 299 , Springer-Verlag, Berlin (1992) | MR 1217706 | Zbl 0762.30001
,[29] Nonhomogeneous Media and Vibration Theory, Springer-Verlag, Berlin (1980) | MR 578345
,[30] Boundary value problems in domains containing perforated walls, Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. III, Paris, 1980/1981, Res. Notes Math. vol. 70 , Pitman, Boston, MA (1982), 309 -325 | MR 670282
,[31] Incompressible fluid flow in a porous medium: convergence of the homogenization process, (ed.), Nonhomogeneous Media and Vibration Theory (1980), 368 -377
,