In this paper we consider the heat flow associated to the classical Plateau problem for surfaces of prescribed mean curvature. To be precise, for a given Jordan curve , a given prescribed mean curvature function and an initial datum satisfying the Plateau boundary condition, i.e. that is a homeomorphism, we consider the geometric flow We show that an isoperimetric condition on H ensures the existence of a global weak solution. Moreover, we establish that these global solutions sub-converge as to a conformal solution of the classical Plateau problem for surfaces of prescribed mean curvature.
@article{AIHPC_2015__32_1_109_0, author = {Duzaar, Frank and Scheven, Christoph}, title = {The evolution of H-surfaces with a Plateau boundary condition}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {32}, year = {2015}, pages = {109-157}, doi = {10.1016/j.anihpc.2013.10.003}, mrnumber = {3303944}, zbl = {1328.53083}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2015__32_1_109_0} }
Duzaar, Frank; Scheven, Christoph. The evolution of H-surfaces with a Plateau boundary condition. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) pp. 109-157. doi : 10.1016/j.anihpc.2013.10.003. http://gdmltest.u-ga.fr/item/AIHPC_2015__32_1_109_0/
[1] Gradient estimates for a class of parabolic systems, Duke Math. J. 136 no. 2 (2007), 285 -320 | MR 2286632 | Zbl 1113.35105
, ,[2] Second order parabolic systems, optimal regularity, and singular sets of solutions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 705 -751 | Numdam | MR 2172857 | Zbl 1099.35042
, ,[3] Weak solutions to the heat flow for surfaces of prescribed mean curvature, Trans. Amer. Math. Soc. 365 (2013), 4633 -4677 | MR 3066767 | Zbl 1293.53009
, , ,[4] Global solutions to the heat flow for m-harmonic maps and regularity, Indiana Univ. Math. J. 61 no. 6 (2012), 2157 -2210 | MR 3129107 | Zbl 1295.58006
, , ,[5] On estimates for elliptic equations in divergence form, Commun. Pure Appl. Math. 51 no. 1 (1998), 1 -21 | Zbl 0906.35030
, ,[6] Heat flow for the minimal surface with Plateau boundary condition, Acta Math. Sin. Engl. Ser. 19 no. 1 (2003), 1 -28 | MR 1968464 | Zbl 1137.53336
, ,[7] Another approach to the heat flow for Plateau problem, J. Differ. Equ. 189 (2003), 46 -70 | MR 1968314 | Zbl 1171.53329
, ,[8] An evolution of minimal surfaces with Plateau condition, Calc. Var. Partial Differ. Equ. 19 (2004), 117 -163 | MR 2034577 | Zbl 1118.53005
, ,[9] The existence of the heat flow of H-systems, Discrete Contin. Dyn. Syst. 8 no. 1 (2002), 219 -236 | MR 1877837 | Zbl 1136.35403
, ,[10] Minimal Surfaces, vols. I and II, Grundlehren Math. Wiss. vols. 295 and 296 , Springer (1992) | MR 1215268
, , , ,[11] Existence and regularity for higher dimensional H-systems, Duke Math. J. 101 no. 3 (2000), 459 -485 | MR 1740684 | Zbl 0959.35050
, ,[12] Existence of hypersurfaces with prescribed mean curvature in Riemannian manifolds, Indiana Univ. Math. J. 45 (1996), 1045 -1093 | MR 1444478 | Zbl 0880.53049
, ,[13] Parametric surfaces of least H-energy in a Riemannian manifold, Math. Ann. 314 (1999), 197 -244 | MR 1697443 | Zbl 0953.53007
, ,[14] Measure Theory and Fine Properties of Functions, Stud. Adv. Math. , CRC Press, Boca Raton, FL (1992) | MR 1158660 | Zbl 0804.28001
, ,[15] Geometric Measure Theory, Springer, Berlin (1969) | MR 257325 | Zbl 0176.00801
,[16] The Plateau problem for surfaces of prescribed mean curvature in a cylinder, Invent. Math. 13 (1971), 169 -178 | MR 298515 | Zbl 0214.11103
, ,[17] Existence theorems for parametric surfaces of prescribed mean curvature, Indiana Univ. Math. J. 22 (1972), 445 -472 | MR 308904 | Zbl 0233.53004
, ,[18] Construction of harmonic map flows through the method of discrete Morse flows, Comput. Vis. Sci. 7 (2004), 53 -59 | MR 2065958 | Zbl 1120.53304
, , ,[19] Über die Existenz einer Fläche konstanter mittlerer Krümmung mit gegebener Berandung, Math. Ann. 137 (1954), 258 -287 | MR 70013 | Zbl 0055.15303
,[20] Zu einem Satz von Hildebrandt über das Randverhalten von Minimalflächen, Math. Z. 111 (1969), 372 -386 | MR 266066 | Zbl 0172.38601
, ,[21] Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie I, Math. Z. 112 (1969), 205 -213 | MR 250208 | Zbl 0175.40403
,[22] Einige Bemerkungen über Flächen vorgeschriebener mittlerer Krümmung, Math. Z. 115 (1970), 169 -178 | MR 266115 | Zbl 0185.50201
,[23] Two-dimensional variational problems with obstructions, and Plateau's problem for H-surfaces in a Riemannian manifold, Commun. Pure Appl. Math. 25 (1972), 187 -223 | MR 296829 | Zbl 0245.53006
, ,[24] The heat flow for H-systems on higher dimensional manifolds, Indiana Univ. Math. J. 59 no. 3 (2010), 761 -789 | MR 2779060 | Zbl 1210.53065
, ,[25] Variational principles for minimal surfaces, Topics in Nonlinear Analysis, Prog. Nonlinear Differ. Equ. Appl. vol. 35 , Birkäuser, Basel (1999), 477 -498 | MR 1725580 | Zbl 0921.35046
, ,[26] An approach to the construction of Morse flows for variational functionals, Nematics, Orsay, 1990, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. vol. 332 , Kluwer Acad. Publ., Dodrecht (1991), 195 -199 | MR 1178095 | Zbl 0850.76043
,[27] A global existence result for the heat flow of higher dimensional H-systems, J. Math. Pures Appl. 97 no. 3 (2012), 282 -294 | MR 2887626 | Zbl 1241.35053
, , ,[28] The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 no. 2 (2007), 195 -261 | Numdam | MR 2352517 | Zbl 1178.35168
,[29] Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, New York (1966) | MR 202511 | Zbl 0142.38701
,[30] Weak solutions of a biharmonic map heat flow, Adv. Calc. Var. 2 (2009), 73 -92 | MR 2494507 | Zbl 1165.58008
,[31] Boundary regularity via Uhlenbeck–Rivière decomposition, Analysis 29 (2010), 199 -220 | MR 2554638 | Zbl 1181.35102
, ,[32] An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 20 (1966), 733 -737 | Numdam | MR 208360 | Zbl 0163.29905
,[33] Heat flow for the equation of surfaces with prescribed mean curvature, Math. Ann. 293 (1991), 123 -146 | MR 1125012 | Zbl 0761.58052
,[34] Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007), 1 -22 | MR 2285745 | Zbl 1128.58010
,[35] Compact sets in the space , Ann. Mat. Pura Appl. (4) 146 (1987), 65 -96 | MR 916688 | Zbl 0629.46031
,[36] Partial regularity for stationary harmonic maps at a free boundary, Math. Z. 253 no. 1 (2006), 135 -157 | MR 2206640 | Zbl 1092.53050
,[37] Lectures on Geometric Measure Theory, Proc. Centre Math. Anal., Aust. Natl. Univ. vol. 3 , Australian National Univ. (1983) | MR 756417 | Zbl 0546.49019
,[38] Isoperimetric inequalities and the problem of Plateau, Math. Ann. 222 (1976), 97 -144 | MR 417903 | Zbl 0345.49024
,[39] On the existence of surfaces with prescribed mean curvature and boundary, Math. Z. 146 (1976), 113 -135 | MR 394394 | Zbl 0343.49016
,[40] The nonexistence of branch points in solutions to certain classes of Plateau-type variational problems, Math. Z. 163 no. 3 (1978), 211 -238 | MR 513728 | Zbl 0404.49037
, ,[41] On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558 -581 | MR 826871 | Zbl 0595.58013
,[42] The existence of surfaces of constant mean curvature with free boundaries, Acta Math. 160 (1988), 19 -64 | MR 926524 | Zbl 0646.53005
,[43] Plateau's Problem and the Calculus of Variations, Math. Notes vol. 35 , Princeton University Press, Princeton, NJ (1988) | MR 992402 | Zbl 0694.49028
,[44] Ein einfacher Beweis eines Regularitätssatzes für schwache Lösungen gewisser elliptischer Systeme, Math. Z. 112 (1969), 214 -218 | MR 257549 | Zbl 0177.14704
,[45] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318 -344 | MR 243467 | Zbl 0181.11501
,