Dans cet article, nous étudions le système parabolique de Keller–Segel avec Ω un domaine de , , où , sont des constantes et . Lorsque , les conditions aux limites de Neumann sont prescrites sur le bord. Sous des hypothèses convenables, nous prouvons la non-dégénérescence locale des points d'explosion. Ce résultat semble nouveau même dans le cas du système de Keller–Segel classique (). Des estimations inférieures globales de la vitesse d'explosion sont également obtenues. Dans le cas singulier , nous établissons les propriétés nécessaires d'existence locale et de régularité.
This paper is concerned with the parabolic Keller–Segel system in a domain Ω of with , where , are constants and . When , we impose the Neumann boundary conditions on the boundary. Under suitable assumptions, we prove the local nondegeneracy of blow-up points. This seems new even for the classical Keller–Segel system (). Lower global blow-up estimates are also obtained. In the singular case , as a prerequisite, local existence and regularity properties are established.
@article{AIHPC_2014__31_4_851_0, author = {Mizoguchi, Noriko and Souplet, Philippe}, title = {Nondegeneracy of blow-up points for the parabolic Keller--Segel system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {31}, year = {2014}, pages = {851-875}, doi = {10.1016/j.anihpc.2013.07.007}, mrnumber = {3249815}, zbl = {1302.35075}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_4_851_0} }
Mizoguchi, Noriko; Souplet, Philippe. Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 851-875. doi : 10.1016/j.anihpc.2013.07.007. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_4_851_0/
[1] Local and global solvability of some parabolic systems modeling chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 715 -743 | MR 1657160 | Zbl 0913.35021
,[2] The 8π-problem for radially symmetric solutions of a chemotaxis model in a disc, Topol. Methods Nonlinear Anal. 27 (2006), 133 -147 | MR 2236414 | Zbl 1135.35367
, , , ,[3] Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math. 66 (1994), 319 -334 | MR 1268074 | Zbl 0817.35041
, ,[4] Infinite time aggregation for the critical Patlak–Keller–Segel model in , Comm. Pure Appl. Math. 61 (2008), 1449 -1481 | MR 2436186 | Zbl 1155.35100
, , ,[5] Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 44 (2006) | MR 2226917 | Zbl 1112.35023
, , ,[6] The parabolic–parabolic Keller–Segel model in , Comm. Math. Sci. 6 (2008), 417 -447 | MR 2433703 | Zbl 1149.35360
, ,[7] Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981), 217 -237 | MR 632161 | Zbl 0481.92010
,[8] Chemotactic Collapse in Two Dimensions, Lecture Notes in Biomath. vol. 55 , Springer, Berlin (1984), 61 -66 | MR 813704
, ,[9] Finite-time blow-up and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differential Equations 252 (2012), 5832 -5851 | MR 2902137 | Zbl 1252.35087
, ,[10] Finite-time blow-up in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2, Acta Appl. Math. (2013), http://dx.doi.org/10.1007/s10440-013-9832-5 | MR 3152080
, ,[11] Symmetrization techniques on unbounded domains: application to a chemotaxis system on , J. Differential Equations 145 (1998), 156 -183 | MR 1620286 | Zbl 0908.35016
, , ,[12] Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal. TMA 72 (2010), 1044 -1064 | MR 2579368 | Zbl 1183.92012
, ,[13] The two-dimensional Keller–Segel model after blow-up, Discrete Cont. Dynam. Syst., Ser. A 25 (2009), 109 -121 | MR 2525170 | Zbl 1180.35131
, ,[14] Global behaviour of a reaction–diffusion system modelling chemotaxis, Math. Nachr. 195 (1998), 77 -114 | MR 1654677 | Zbl 0918.35064
, ,[15] Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845 -884 | MR 1003437 | Zbl 0703.35020
, ,[16] Asymptotic behavior of type I blow-up solutions to a parabolic–elliptic system of drift-diffusion type, Archive Rat. Mech. Anal. 201 (2011), 549 -573 | MR 2820357 | Zbl 1270.35131
, , ,[17] Self-similar blow-up for a reaction–diffusion system, J. Comput. Appl. Math. 97 (1998), 99 -119 | MR 1651769 | Zbl 0934.35066
, , ,[18] Singularity patterns in a chemotaxis model, Math. Ann. 306 (1996), 583 -623 | MR 1415081 | Zbl 0864.35008
, ,[19] A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Super. Pisa Cl. Sci. 24 (1997), 633 -683 | Numdam | MR 1627338 | Zbl 0904.35037
, ,[20] Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q. 10 (2002), 501 -543 | MR 2052525 | Zbl 1057.92013
, ,[21] A user's guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), 183 -217 | MR 2448428 | Zbl 1161.92003
, ,[22] Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215 (2005), 52 -107 | MR 2146345 | Zbl 1085.35065
, ,[23] On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), 819 -824 | MR 1046835 | Zbl 0746.35002
, ,[24] On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305 -330 | MR 160044 | Zbl 0156.33503
,[25] Grow-up rate and refined asymptotics for a two-dimensional Patlak–Keller–Segel model in a disk, SIAM J. Math. Anal. 40 (2008), 1852 -1881 | MR 2471903 | Zbl 05607991
, ,[26] Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), 399 -415 | Zbl 1170.92306
, ,[27] Local existence and finite time blow-up of solutions in the 2-D Keller–Segel system, J. Evol. Equ. 8 (2008), 353 -378 | MR 2407206 | Zbl 1162.35040
, ,[28] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. , Amer. Math. Soc., Providence, RI (1968) | MR 241822
, , ,[29] Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases, Indiana Univ. Math. J. 56 (2007), 1279 -1297 | MR 2333473 | Zbl 1118.35006
, ,[30] Measure valued solutions of the 2D Keller–Segel system, Arch. Ration. Mech. Anal. 206 (2012), 31 -80 | MR 2968590 | Zbl 1256.35180
, , ,[31] Type II blow-up solutions to a parabolic–elliptic system, Adv. Math. Sci. Appl. 17 (2007), 505 -545 | MR 2374139 | Zbl 1147.35013
, ,[32] N. Mizoguchi, T. Senba, Refined asymptotics of blowup solutions to a simplified chemotaxis system, preprint. | MR 2295188
[33] A semilinear parabolic–elliptic chemotaxis system with critical mass in any space dimension, Nonlinearity (2013) | MR 3093299 | Zbl 1273.35157
,[34] Semilinear parabolic problems define semiflows on spaces, Trans. Amer. Math. Soc. 278 (1983), 21 -55 | MR 697059 | Zbl 0525.35044
,[35] Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5 (1995), 581 -601 | MR 1361006 | Zbl 0843.92007
,[36] Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl. 6 (2001), 37 -55 | MR 1887324 | Zbl 0990.35024
,[37] Chemotactic collapse in parabolic system of mathematical biology, Hiroshima Math. J. 30 (2000), 463 -497 | MR 1799300 | Zbl 0984.35079
, , ,[38] Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. 40 (1997), 411 -433 | MR 1610709 | Zbl 0901.35104
, , ,[39] Blow-up behavior of solutions to a parabolic–elliptic system on higher dimensional domains, Discrete Cont. Dynam. Syst. 32 (2012), 3691 -3713 | MR 2945835 | Zbl 1248.35029
, ,[40] Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol. 42 (1973), 63 -105
,[41] Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts (2007) | MR 2346798 | Zbl 1128.35003
, ,[42] P. Raphaêl, R. Schweyer, On the stability of critical chemotactic aggregation, preprint, 2012. | MR 3201901
[43] Blowup behavior of radial solutions to Jäger–Luckhaus system in high dimensional domains, Funkcial. Ekvac. 48 (2005), 247 -271 | MR 2177120 | Zbl 1116.35065
,[44] Grow-up rate of a radial solution for a parabolic–elliptic system in , Adv. Differential Equations 14 (2009), 1155 -1192 | MR 2560872 | Zbl 1182.35054
,[45] Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term, J. Differential Equations 227 (2006), 333 -364 | MR 2235324 | Zbl 1102.35046
, ,[46] ε-Regularity theorem and its application to the blow-up solutions of Keller–Segel systems in higher dimensions, J. Math. Anal. Appl. 364 (2010), 51 -70 | MR 2576051 | Zbl 1186.35021
,[47] Free Energy and Self-Interacting Particles, Progr. Nonlinear Differential Equations Appl. vol. 62 , Birkhäuser Boston, Inc., Boston, MA (2005) | MR 2135150 | Zbl 1082.35006
,[48] Applied Analysis. Mathematical Methods in Natural Science, Imperial College Press/World Scientific Publishing Co. Pte. Ltd., London/Hackensack, NJ (2011) | MR 2790860 | Zbl 1228.00004
, ,[49] Point dynamics for a singular limit of the Keller–Segel model I & II, SIAM J. Appl. Math. 64 (2004), 1198 -1223 | MR 2068667 | Zbl 1058.35021
,[50] Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (2013), http://dx.doi.org/10.1016/j.matpur.2013.01.020 | MR 3115832 | Zbl 1326.35053
,