We study the existence of positive solutions on to semilinear elliptic equation where and f is modeled on the power case . Denoting with c the mountain pass level of , (), we show, via a new energy constrained variational argument, that for any there exists a positive bounded solution such that and as uniformly with respect to . We also characterize the monotonicity, symmetry and periodicity properties of .
@article{AIHPC_2014__31_4_725_0, author = {Alessio, Francesca and Montecchiari, Piero}, title = {An energy constrained method for the existence of layered type solutions of NLS equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {31}, year = {2014}, pages = {725-749}, doi = {10.1016/j.anihpc.2013.07.003}, mrnumber = {3249811}, zbl = {06349267}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_4_725_0} }
Alessio, Francesca; Montecchiari, Piero. An energy constrained method for the existence of layered type solutions of NLS equations. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 725-749. doi : 10.1016/j.anihpc.2013.07.003. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_4_725_0/
[1] Stationary layered solutions for a system of Allen–Cahn type equations, Indiana Univ. Math. J. (2013) | MR 3188554 | Zbl 1300.35035
,[2] Stationary layered solutions in for a class of non autonomous Allen–Cahn equations, Calc. Var. Partial Differential Equations 11 no. 2 (2000), 177 -202 | MR 1782992 | Zbl 0965.35050
, , ,[3] Entire solutions in for a class of Allen–Cahn equations, ESAIM Control Optim. Calc. Var. 11 (2005), 633 -672 | Numdam | MR 2167878 | Zbl 1084.35020
, ,[4] Multiplicity of entire solutions for a class of almost periodic Allen–Cahn type equations, Adv. Nonlinear Stud. 5 (2005), 515 -549 | MR 2180581 | Zbl 1284.35170
, ,[5] Brake orbits type solutions to some class of semilinear elliptic equations, Calc. Var. Partial Differential Equations 30 no. 51 (2007), 83 | MR 2333096 | Zbl 1153.35025
, ,[6] A Primer of Nonlinear Analysis, Cambridge University Press (1995) | MR 1336591 | Zbl 0818.47059
, ,[7] Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad. Sci. Paris 293 no. 9 (1981), 489 -492 | MR 646873 | Zbl 0492.35010
, ,[8] Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313 -345 | MR 695535 | Zbl 0533.35029
, ,[9] Équations de Champs scalaires Euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Ser. I Math. 297 no. 5 (1983), 307 -310 | MR 734575 | Zbl 0544.35042
, , ,[10] Qualitative properties of some bounded positive solutions to scalar field equations, Calc. Var. 13 (2001), 181 -211 | MR 1861097 | Zbl 1151.35344
, ,[11] An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Mathematicos vol. 26 , IM-UFRJ, Rio de Janeiro (1989)
,[12] Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 no. 4 (1982), 549 -561 | MR 677997 | Zbl 0513.35007
, ,[13] New solutions of equations on , Ann. Sc. Norm. Super. Pisa Cl. Sci. 30 (2001), 535 -563 | Numdam | MR 1896077 | Zbl 1025.35009
,[14] The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math. 224 no. 4–10 (2010), 1462 -1516 | MR 2646302 | Zbl 1197.35114
, , ,[15] Hamiltonian identities for elliptic partial differential equations, J. Funct. Anal. 254 no. 4 (2008), 904 -933 | MR 2381198 | Zbl 1148.35023
,[16] Axial symmetry of some steady state solutions to nonlinear Schroedinger equations, Proc. Amer. Math. Soc. 139 no. 3 (2011), 1023 -1032 | MR 2745653 | Zbl 1211.35115
, , ,[17] A remark on least energy solutions in , Proc. Amer. Math. Soc. 131 (2003), 2399 -2408 | MR 1974637 | Zbl 1094.35049
, ,[18] Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal. 105 no. 3 (1989), 243 -266 | MR 969899 | Zbl 0676.35032
,[19] Radial symmetry of positive solutions of nonlinear elliptic equations in , Comm. Partial Differential Equations 18 no. 5–6 (1993), 1043 -1054 | MR 1218528 | Zbl 0788.35042
, ,[20] Symétrie et Compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), 315 -334 | MR 683027 | Zbl 0501.46032
,[21] Some new entire solutions of semilinear elliptic equations on , Adv. Math. 221 no. 6 (2009), 1843 -1909 | MR 2522830 | Zbl 1178.35186
,[22] Multiplicity results for a class of semilinear elliptic equations on , Rend. Semin. Mat. Univ. Padova 95 (1996), 1 -36 | Numdam | MR 1405365
,[23] Analysis, Grad. Stud. Math. vol. 14 , American Mathematical Society, Providence, RI (2001) | MR 1817225
, ,[24] Lectures on Linear Partial Differential Equations, CBMS Reg. Conf. Ser. Math. vol. 17 , American Mathematical Society (1973) | MR 450755 | Zbl 0267.35001
,[25] On Elliptic partial differential equations, Ann. Sc. Norm. Pisa 13 (1959), 116 -162 | Numdam | MR 109940 | Zbl 0088.07601
,[26] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. vol. 65 , American Mathematical Society, Providence, RI (1986) | MR 845785
,[27] Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 no. 3 (2000), 897 -923 | MR 1803216 | Zbl 0979.35049
, ,[28] The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse, Appl. Math. Sci. vol. 139 , Springer-Verlag, New York (1999) | MR 1696311 | Zbl 0867.35094
, ,[29] Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149 -162 | MR 454365 | Zbl 0356.35028
,[30] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 no. 4 (1983), 567 -576 | MR 691044 | Zbl 0527.35023
,