Multiple brake orbits on compact convex symmetric reversible hypersurfaces in 𝐑 2n
Zhang, Duanzhi ; Liu, Chungen
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014), p. 531-554 / Harvested from Numdam

In this paper, we prove that there exist at least [n+1 2]+1 geometrically distinct brake orbits on every C 2 compact convex symmetric hypersurface Σ in 𝐑 2n for n2 satisfying the reversible condition NΣ=Σ with N= diag (-I n ,I n ). As a consequence, we show that there exist at least [n+1 2]+1 geometrically distinct brake orbits in every bounded convex symmetric domain in 𝐑 n with n2 which gives a positive answer to the Seifert conjecture of 1948 in the symmetric case for n=3. As an application, for n=4and5, we prove that if there are exactly n geometrically distinct closed characteristics on Σ, then all of them are symmetric brake orbits after suitable time translation.

Publié le : 2014-01-01
DOI : https://doi.org/10.1016/j.anihpc.2013.03.010
Classification:  58E05,  70H05,  34C25
@article{AIHPC_2014__31_3_531_0,
     author = {Zhang, Duanzhi and Liu, Chungen},
     title = {Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$
      },
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {31},
     year = {2014},
     pages = {531-554},
     doi = {10.1016/j.anihpc.2013.03.010},
     zbl = {1300.52006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_3_531_0}
}
Zhang, Duanzhi; Liu, Chungen. Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$
      . Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 531-554. doi : 10.1016/j.anihpc.2013.03.010. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_3_531_0/

[1] A. Ambrosetti, V. Benci, Y. Long, A note on the existence of multiple brake orbits, Nonlinear Anal. 21 (1993), 643 -649 | MR 1246284 | Zbl 0811.70015

[2] V. Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 401 -412 | Numdam | MR 779876 | Zbl 0588.35007

[3] V. Benci, F. Giannoni, A new proof of the existence of a brake orbit, Advanced Topics in the Theory of Dynamical Systems, Notes Rep. Math. Sci. Eng. vol. 6 (1989), 37 -49 | Zbl 0674.34034

[4] S. Bolotin, Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1978), 72 -77 | MR 524544 | Zbl 0403.34053

[5] S. Bolotin, V.V. Kozlov, Librations with many degrees of freedom, J. Appl. Math. Mech. 42 (1978), 245 -250 | MR 622465

[6] S.E. Cappell, R. Lee, E.Y. Miller, On the Maslov-type index, Comm. Pure Appl. Math. 47 (1994), 121 -186 | MR 1263126 | Zbl 0805.58022

[7] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin (1990) | MR 1051888 | Zbl 0707.70003

[8] H. Gluck, W. Ziller, Existence of periodic solutions of conservative systems, Seminar on Minimal Submanifolds, Princeton University Press (1983), 65 -98 | MR 795229

[9] E.W.C. Van Groesen, Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988), 1 -12 | MR 942350 | Zbl 0665.70022

[10] K. Hayashi, Periodic solution of classical Hamiltonian systems, Tokyo J. Math. 6 (1983), 473 -486 | MR 732099 | Zbl 0498.58010

[11] C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud. 7 no. 1 (2007), 131 -161 | MR 2287581 | Zbl 1147.53064

[12] C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math. 232 no. 1 (2007), 233 -255 | MR 2358038 | Zbl 1152.37026

[13] C. Liu, Y. Long, C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in 𝐑 2n , Math. Ann. 323 no. 2 (2002), 201 -215 | MR 1913039 | Zbl 1005.37030

[14] C. Liu, D. Zhang, Iteration theory of L-index and multiplicity of brake orbits, arXiv:0908.0021v1 [math.SG] | MR 3210027 | Zbl 06298666

[15] Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math. 187 (1999), 113 -149 | MR 1674313 | Zbl 0924.58024

[16] Y. Long, Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel (2002) | MR 1898560 | Zbl 1012.37012

[17] Y. Long, D. Zhang, C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math. 203 (2006), 568 -635 | MR 2227734 | Zbl 1118.58006

[18] Y. Long, C. Zhu, Closed characteristics on compact convex hypersurfaces in 𝐑 2n , Ann. of Math. 155 (2002), 317 -368 | MR 1906590 | Zbl 1028.53003

[19] P.H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian systems, Nonlinear Anal. 11 (1987), 599 -611 | MR 886651

[20] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z. 51 (1948), 197 -216 | MR 25693 | Zbl 0030.22103

[21] A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann. 283 (1989), 241 -255 | MR 980596 | Zbl 0642.58030

[22] D. Zhang, Brake type closed characteristics on reversible compact convex hypersurfaces in 𝐑 2n , Nonlinear Anal. 74 (2011), 3149 -3158 | MR 2793553 | Zbl 1223.37077

[23] D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. Syst. (2013), arXiv:1110.6915v1 [math.SG] | MR 3294248