In this paper, we prove that there exist at least geometrically distinct brake orbits on every compact convex symmetric hypersurface Σ in for satisfying the reversible condition with . As a consequence, we show that there exist at least geometrically distinct brake orbits in every bounded convex symmetric domain in with which gives a positive answer to the Seifert conjecture of 1948 in the symmetric case for . As an application, for , we prove that if there are exactly n geometrically distinct closed characteristics on Σ, then all of them are symmetric brake orbits after suitable time translation.
@article{AIHPC_2014__31_3_531_0, author = {Zhang, Duanzhi and Liu, Chungen}, title = {Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$ }, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {31}, year = {2014}, pages = {531-554}, doi = {10.1016/j.anihpc.2013.03.010}, zbl = {1300.52006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_3_531_0} }
Zhang, Duanzhi; Liu, Chungen. Multiple brake orbits on compact convex symmetric reversible hypersurfaces in $ {\mathbf{R}}^{2n}$ . Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 531-554. doi : 10.1016/j.anihpc.2013.03.010. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_3_531_0/
[1] A note on the existence of multiple brake orbits, Nonlinear Anal. 21 (1993), 643 -649 | MR 1246284 | Zbl 0811.70015
, , ,[2] Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 401 -412 | Numdam | MR 779876 | Zbl 0588.35007
,[3] A new proof of the existence of a brake orbit, Advanced Topics in the Theory of Dynamical Systems, Notes Rep. Math. Sci. Eng. vol. 6 (1989), 37 -49 | Zbl 0674.34034
, ,[4] Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1978), 72 -77 | MR 524544 | Zbl 0403.34053
,[5] Librations with many degrees of freedom, J. Appl. Math. Mech. 42 (1978), 245 -250 | MR 622465
, ,[6] On the Maslov-type index, Comm. Pure Appl. Math. 47 (1994), 121 -186 | MR 1263126 | Zbl 0805.58022
, , ,[7] Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin (1990) | MR 1051888 | Zbl 0707.70003
,[8] Existence of periodic solutions of conservative systems, Seminar on Minimal Submanifolds, Princeton University Press (1983), 65 -98 | MR 795229
, ,[9] Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988), 1 -12 | MR 942350 | Zbl 0665.70022
,[10] Periodic solution of classical Hamiltonian systems, Tokyo J. Math. 6 (1983), 473 -486 | MR 732099 | Zbl 0498.58010
,[11] Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud. 7 no. 1 (2007), 131 -161 | MR 2287581 | Zbl 1147.53064
,[12] Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math. 232 no. 1 (2007), 233 -255 | MR 2358038 | Zbl 1152.37026
,[13] Multiplicity of closed characteristics on symmetric convex hypersurfaces in , Math. Ann. 323 no. 2 (2002), 201 -215 | MR 1913039 | Zbl 1005.37030
, , ,[14] Iteration theory of L-index and multiplicity of brake orbits, arXiv:0908.0021v1 [math.SG] | MR 3210027 | Zbl 06298666
, ,[15] Bott formula of the Maslov-type index theory, Pacific J. Math. 187 (1999), 113 -149 | MR 1674313 | Zbl 0924.58024
,[16] Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel (2002) | MR 1898560 | Zbl 1012.37012
,[17] Multiple brake orbits in bounded convex symmetric domains, Adv. Math. 203 (2006), 568 -635 | MR 2227734 | Zbl 1118.58006
, , ,[18] Closed characteristics on compact convex hypersurfaces in , Ann. of Math. 155 (2002), 317 -368 | MR 1906590 | Zbl 1028.53003
, ,[19] On the existence of periodic solutions for a class of symmetric Hamiltonian systems, Nonlinear Anal. 11 (1987), 599 -611 | MR 886651
,[20] Periodische Bewegungen mechanischer Systeme, Math. Z. 51 (1948), 197 -216 | MR 25693 | Zbl 0030.22103
,[21] An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann. 283 (1989), 241 -255 | MR 980596 | Zbl 0642.58030
,[22] Brake type closed characteristics on reversible compact convex hypersurfaces in , Nonlinear Anal. 74 (2011), 3149 -3158 | MR 2793553 | Zbl 1223.37077
,[23] Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. Syst. (2013), arXiv:1110.6915v1 [math.SG] | MR 3294248
,