We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second order differential operator . Namely, if ρ is a nonnegative weight such that , then the Hardy inequality holds. We show concrete examples specializing the function ρ.Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo–Nirenberg inequalities, uncertain principle and first order Caffarelli–Kohn–Nirenberg interpolation inequality.
@article{AIHPC_2014__31_3_449_0, author = {D'Ambrosio, Lorenzo and Dipierro, Serena}, title = {Hardy inequalities on Riemannian manifolds and applications}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {31}, year = {2014}, pages = {449-475}, doi = {10.1016/j.anihpc.2013.04.004}, mrnumber = {3208450}, zbl = {1317.46022}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_3_449_0} }
D'Ambrosio, Lorenzo; Dipierro, Serena. Hardy inequalities on Riemannian manifolds and applications. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 449-475. doi : 10.1016/j.anihpc.2013.04.004. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_3_449_0/
[1] Role of the fundamental solution in Hardy–Sobolev-type inequalities, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 1111 -1130 | MR 2290126 | Zbl 1124.35003
, ,[2] Hardy type inequalities on complete Riemannian manifolds, Monatsh. Math. 163 (2011), 115 -129 | MR 2794193 | Zbl 1218.53037
, ,[3] Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin (1998) | MR 1636569 | Zbl 0896.53003
,[4] The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121 -139 | MR 742415 | Zbl 0556.35063
, ,[5] A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004), 2169 -2196 | MR 2048514 | Zbl 1129.26019
, , ,[6] Hardy inequality and heat semigroup estimates for Riemannian manifolds with singular data, Comm. Partial Differential Equations 37 (2012), 885 -900 | MR 2915867 | Zbl 1251.58009
, , , ,[7] Conformal Killing vector fields and Rellich type identities on Riemannian manifolds, I, Lect. Notes Semin. Interdiscip. Mat. vol. 7 (2008), 65 -80 | MR 2605149 | Zbl 1187.35058
, ,[8] Conformal Killing vector fields and Rellich type identities on Riemannian manifolds, II, Mediterr. J. Math. 9 (2012), 1 -20 | MR 2885483 | Zbl 1241.58009
, ,[9] Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 no. 1 (1998), 223 -262 | MR 1638143 | Zbl 0907.35048
, ,[10] Hardy's inequalities revisited, Ann. Sc. Norm. Super. Cl. Sci. (4) 25 (1997), 217 -237 | Numdam | MR 1655516 | Zbl 1011.46027
, ,[11] Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madr. 10 (1997), 443 -469 | MR 1605678 | Zbl 0894.35038
, ,[12] Spectral stability of the Neumann Laplacian, J. Differential Equations 186 (2002), 485 -508 | MR 1942219 | Zbl 1042.35035
, ,[13] First order interpolation inequalities with weights, Compos. Math. 53 no. 3 (1984), 259 -275 | Numdam | MR 768824 | Zbl 0563.46024
, , ,[14] Complete manifolds with non-negative Ricci curvature and the Caffarelli–Kohn–Nirenberg inequalities, Compos. Math. 140 (2004), 818 -826 | MR 2041783 | Zbl 1066.53073
, ,[15] Inégalités isopérimétriques de Faber–Krahn et conséquences, Actes de la Table Ronde de Géométrie Différentielle, Luminy, 1992, Semin. Congr. vol. 1 (1996), 205 -232 | MR 1427759 | Zbl 0884.58088
,[16] Inégalités de Hardy sur les variétés Riemanniennes non-compactes, J. Math. Pures Appl. (9) 76 (1997), 883 -891 | MR 1489943
,[17] On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413 -443 | MR 309010 | Zbl 0246.53049
, ,[18] Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2004), 725 -734 | MR 2019949 | Zbl 1049.35077
,[19] Some Hardy inequalities on the Heisenberg group, Differ. Equ. 40 (2004), 552 -564 | MR 2153649 | Zbl 1073.22003
,[20] Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) IV (2005), 451 -586 | Numdam | MR 2185865 | Zbl 1170.35372
,[21] Explicit constants for Rellich inequalities in , Math. Z. 227 (1998), 511 -523 | MR 1612685 | Zbl 0903.58049
, ,[22] Heat kernel and Hardy estimates for locally Euclidean manifolds with fractal boundaries, Geom. Funct. Anal. 3 (1993), 527 -563 | MR 1250755 | Zbl 0797.58087
, ,[23] Optimal Hardy-type inequality for second-order elliptic operator and applications, arXiv:1208.2342 | MR 3170212
, , ,[24] Optimal Hardy-type inequalities for elliptic operators, C. R. Acad. Sci. Paris 350 (2012), 475 -479 | MR 2929052 | Zbl 1276.35010
, , ,[25] Some weighted Gagliardo–Nirenberg inequalities and applications, Proc. Amer. Math. Soc. 135 (2007), 2795 -2802 | MR 2317954 | Zbl 1120.26009
, ,[26] The spectrum of the Laplacian of manifolds of positive curvature, Duke Math. J. 65 (1992), 1 -21 | MR 1148983 | Zbl 0764.53028
, ,[27] Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149 -2168 | MR 2048513 | Zbl 1079.46021
, , ,[28] On the existence of a Green function on a manifold, Russian Math. Surveys 38 no. 1 (1983), 190 -191 | Zbl 0542.35025
,[29] On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifold, Math. USSR Sb. 56 no. 2 (1987), 349 -357 | MR 815269 | Zbl 0612.31007
,[30] Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 no. 2 (1999), 135 -249 | MR 1659871 | Zbl 0927.58019
,[31] Isoperimetric inequalities and capacities on Riemannian manifolds, Oper. Theory Adv. Appl. 109 (1999), 139 -153 | MR 1747869 | Zbl 0947.58034
,[32] The Beurling operator for the hyperbolic plane, Ann. Acad. Sci. Fenn. Math. 37 (2012), 3 -18 | MR 2920420 | Zbl 1268.30039
,[33] Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford (1993) | MR 1207810 | Zbl 0776.31007
, , ,[34] Asymptotic Dirichlet problem for the p-Laplacian on Cartan–Hadamard manifolds, Proc. Amer. Math. Soc. 130 no. 11 (2002), 3393 -3400 | MR 1913019 | Zbl 1016.58021
,[35] Non linear potential theory and quasiregular mappings on Riemannian manifolds, Ann. Acad. Sci. Fenn. Ser. A 74 (1990) | MR 1052971 | Zbl 0698.31010
,[36] p-Laplace operator, quasiregular mappings, and Picard-type theorems, Quasiconformal Mappings and Their Applications, Narosa, New Delhi (2007), 117 -150 | MR 2492501 | Zbl 1161.30321
, ,[37] The role played by space dimension in elliptic critical problems, J. Differential Equations 156 (1999), 407 -426 | MR 1705383 | Zbl 0938.35058
,[38] Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc. 361 no. 12 (2009), 6191 -6203 | MR 2538592 | Zbl 1178.26013
, ,[39] Symmetric Green's functions on complete manifolds, Amer. J. Math. 109 (1987), 1129 -1154 | MR 919006 | Zbl 0634.58033
, ,[40] Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. Éc. Norm. Supér. (4) 39 no. 6 (2006), 921 -982 | Numdam | MR 2316978 | Zbl 1120.53018
, ,[41] On the best constant for Hardy's inequality in , Trans. Amer. Math. Soc. 350 (1998), 3237 -3255 | MR 1458330 | Zbl 0917.26016
, , ,[42] The best possible constant in generalized Hardy's inequality for convex domain in , Nonlinear Anal. 28 (1997), 1601 -1610 | MR 1431208 | Zbl 0876.46025
, ,[43] The sharp constant in Hardy's inequality for complement of bounded domain, Nonlinear Anal. 33 (1998), 105 -120 | MR 1621089 | Zbl 0930.26009
, ,[44] Hardy's inequality for -functions on Riemannian manifolds, Proc. Amer. Math. Soc. 127 no. 9 (1999), 2745 -2754 | MR 1600117 | Zbl 0946.58009
, ,[45] A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), 563 -572 | MR 1769903 | Zbl 0964.26010
,[46] A-priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math. 234 (2001), 1 -362 | Zbl 1074.35500
, ,[47] Vanishing and Finiteness Results in Geometric Analysis, Birkhäuser Verlag, Berlin (2008) | MR 2401291 | Zbl 1150.53001
, , ,[48] Parabolicity of manifolds, Siberian Adv. Math. 9 (1999), 125 -150 | MR 1749853 | Zbl 0991.31008
,[49] Solving the p-Laplacian on manifolds, Proc. Amer. Math. Soc. 128 no. 2 (2000), 541 -545 | MR 1622993 | Zbl 1018.31005
,[50] The Gagliardo–Nirenberg inequalities and manifolds of non-negative Ricci curvature, J. Funct. Anal. 224 (2005), 230 -241 | MR 2139111 | Zbl 1071.53019
,