On double-covering stationary points of a constrained Dirichlet energy
Bevan, Jonathan
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014), p. 391-411 / Harvested from Numdam

Le double-revêtement 𝐮 dc : 2 2 est donné par 𝐮 dc (𝐱)=1 2|𝐱|x 2 2 -x 1 2 2x 1 x 2 en coordonnées cartésiennes. Cet article examine la conjecture selon laquelle 𝐮 dc est le minimiseur global de l'énergie de Dirichlet I(𝐮)= B |𝐮| 2 d𝐱 pour les fonctions satisfaisant (i) 𝐮W 1,2 (B), où B est la boule unité de 2 , (ii) 𝐮=𝐮 dc sur ∂B, et (iii) det 𝐮=1 presque partout. Soit 𝒜 la classe admissible de telles fonctions. La principale innovation est ici d'exprimer I(𝐮) sous forme d'une fonction auxiliaire G(𝐮-𝐮 dc ), avec laquelle nous montrons que 𝐮 dc est un point stationnaire de I en 𝒜, et que 𝐮 dc est un minimiseur global de l'énergie de Dirichlet parmi les membres de 𝒜 dont la décomposition de Fourier peut être contrôlée d'une manière détaillée dans l'article. En construisant des variations autour de 𝐮 dc en 𝒜 par des techniques variationnelles, nous montrons également que 𝐮 dc est un minimiseur local parmi les variations dont la tangente ψ de 𝐮 dc vers 𝒜 obéissent à G(ψ o )>0, où ψ o est la partie impaire de ψ. Additionnellement, un multiplicateur de Lagrange correspondant à la contrainte det 𝐮=1 est identifié par une analyse qui exploite la dualité de Fefferman–Stein.

The double-covering map 𝐮 dc : 2 2 is given by 𝐮 dc (𝐱)=1 2|𝐱|x 2 2 -x 1 2 2x 1 x 2 in cartesian coordinates. This paper examines the conjecture that 𝐮 dc is the global minimizer of the Dirichlet energy I(𝐮)= B |𝐮| 2 d𝐱 among all W 1,2 mappings u of the unit ball B 2 satisfying (i) 𝐮=𝐮 dc on ∂B, and (ii) det 𝐮=1 almost everywhere. Let the class of such admissible maps be 𝒜. The chief innovation is to express I(𝐮) in terms of an auxiliary functional G(𝐮-𝐮 dc ), using which we show that 𝐮 dc is a stationary point of I in 𝒜, and that 𝐮 dc is a global minimizer of the Dirichlet energy among members of 𝒜 whose Fourier decomposition can be controlled in a way made precise in the paper. By constructing variations about 𝐮 dc in 𝒜 using ODE techniques, we also show that 𝐮 dc is a local minimizer among variations whose tangent ψ to 𝒜 at 𝐮 dc obeys G(ψ o )>0, where ψ o is the odd part of ψ. In addition, a Lagrange multiplier corresponding to the constraint det 𝐮=1 is identified by an analysis which exploits the well-known Fefferman–Stein duality.

Publié le : 2014-01-01
DOI : https://doi.org/10.1016/j.anihpc.2013.04.001
Classification:  35A15,  49J40,  49N60
@article{AIHPC_2014__31_2_391_0,
     author = {Bevan, Jonathan},
     title = {On double-covering stationary points of a constrained Dirichlet energy},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {31},
     year = {2014},
     pages = {391-411},
     doi = {10.1016/j.anihpc.2013.04.001},
     mrnumber = {3181676},
     zbl = {1311.49009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_2_391_0}
}
Bevan, Jonathan. On double-covering stationary points of a constrained Dirichlet energy. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 391-411. doi : 10.1016/j.anihpc.2013.04.001. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_2_391_0/

[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 no. 4 (1976/1977), 337-403 | MR 475169 | Zbl 0368.73040

[2] J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. Ser. A 306 no. 1496 (1982), 557-611 | MR 703623 | Zbl 0513.73020

[3] J.M. Ball, Some open problems in elasticity, Geometry, Mechanics, and Dynamics, Springer, New York (2002), 3-59 | MR 1919825 | Zbl 1054.74008

[4] P. Bauman, D. Phillips, N. Owen, Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity, Proc. Roy. Soc. Edinburgh Sect. A 119 no. 3–4 (1991), 241-263 | MR 1135972 | Zbl 0744.49008

[5] J. Bevan, X. Yan, Minimizers with topological singularities in two dimensional elasticity, ESAIM Control Optim. Calc. Var. 14 no. 1 (2008), 192-209 | Numdam | MR 2375756 | Zbl 1140.49014

[6] R. Coifman, P.-L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 no. 3 (1993), 247-286 | MR 1225511 | Zbl 0864.42009

[7] B. Dacorogna, Direct Methods in the Calculus of Variations, Appl. Math. Sci. vol. 78, Springer, New York (2008) | MR 2361288 | Zbl 1140.49001

[8] G. Del Piero, R. Rizzoni, Weak local minimizers in finite elasticity, J. Elasticity 93 (2008), 203-244 | MR 2448828 | Zbl 1159.74356

[9] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL (1992) | MR 1158660 | Zbl 0626.49007

[10] L.C. Evans, R.F. Gariepy, On the partial regularity of energy-minimizing, area-preserving maps, Calc. Var. Partial Differential Equations 9 no. 4 (1999), 357-372 | MR 1731471 | Zbl 0954.49024

[11] C. Fefferman, E. Stein, H p spaces of several variables, Acta Math. 129 no. 3–4 (1972), 137-193 | MR 447953 | Zbl 0257.46078

[12] I. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, Oxford Lecture Ser. Math. Appl. vol. 2, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York (1995) | MR 1373430 | Zbl 0852.47030

[13] A.L. Karakhanyan, Sufficient conditions for regularity of area-preserving deformations, Manuscripta Math. 138 (2012), 463-476 | MR 2916322 | Zbl 1241.35197

[14] C. Mora-Corral, Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension, C. R. Math. Acad. Sci. Paris 348 no. 17–18 (2010), 1045-1048 | MR 2721797 | Zbl 05804405

[15] E. Spadaro, Non-uniqueness of minimizers for strictly polyconvex functionals, Arch. Ration. Mech. Anal. 193 no. 3 (2009), 659-678 | MR 2525114 | Zbl 1170.49032

[16] M. Shahrokhi-Dehkordi, A. Taheri, Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps, J. Convex Anal. 17 no. 1 (2010), 69-79 | MR 2642716 | Zbl 1186.49033

[17] J. Sivaloganathan, S. Spector, On the symmetry of energy-minimising deformations in nonlinear elasticity. I. Incompressible materials, Arch. Ration. Mech. Anal. 196 no. 2 (2010), 363-394 | MR 2609949 | Zbl 1304.74012

[18] J. Sivaloganathan, S. Spector, On the symmetry of energy-minimising deformations in nonlinear elasticity. II. Compressible materials, Arch. Ration. Mech. Anal. 196 no. 2 (2010), 395-431 | MR 2609950 | Zbl 1304.74011

[19] J. Sivaloganathan, S. Spector, On the global stability of two-dimensional, incompressible, elastic bars in uniaxial extension, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 no. 2116 (2010), 1167-1176 | MR 2595039 | Zbl 1195.74102

[20] J. Sivaloganathan, S. Spector, On the stability of incompressible elastic cylinders in uniaxial tension, preprint, 2010. | MR 2810458

[21] S. Vodopyanov, V. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives, Sib. Math. J. 17 no. 3 (1977), 515-531