Duality methods for a class of quasilinear systems
Marini, Antonella ; Otway, Thomas H.
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014), p. 339-348 / Harvested from Numdam

Duality methods are used to generate explicit solutions to nonlinear Hodge systems, demonstrate the well-posedness of boundary value problems, and reveal, via the Hodge–Bäcklund transformation, underlying symmetries among superficially different forms of the equations.

Publié le : 2014-01-01
DOI : https://doi.org/10.1016/j.anihpc.2013.03.007
Classification:  58A14,  58A15,  35J47,  35J62,  35M10
@article{AIHPC_2014__31_2_339_0,
     author = {Marini, Antonella and Otway, Thomas H.},
     title = {Duality methods for a class of quasilinear systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {31},
     year = {2014},
     pages = {339-348},
     doi = {10.1016/j.anihpc.2013.03.007},
     mrnumber = {3181673},
     zbl = {1300.35047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_2_339_0}
}
Marini, Antonella; Otway, Thomas H. Duality methods for a class of quasilinear systems. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 339-348. doi : 10.1016/j.anihpc.2013.03.007. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_2_339_0/

[1] R.P. Agarwal, S. Ding, Advances in differential forms and the A-harmonic equations, Math. Comput. Modelling 37 (2003), 1393-1426 | MR 1996046 | Zbl 1051.58001

[2] A.L. Albujer, L.J. Alías, Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Physics 59 (2009), 620-631 | MR 2518991 | Zbl 1173.53025

[3] L.J. Alías, B. Palmer, A duality result between the minimal surface equation and the maximal surface equation, An. Acad. Brasil. Ciênc 73 (2001), 161-164 | MR 1833778 | Zbl 0999.53007

[4] D.G.B. Edelen, Applied Exterior Calculus, Wiley, New York (1985) | MR 816136 | Zbl 0386.73002

[5] T. Iwaniec, C. Scott, B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. 177 (1999), 37-115 | MR 1747627 | Zbl 0963.58003

[6] H. Lee, Extensions of the duality between minimal surfaces and maximal surfaces, Geom. Dedicata 151 (2011), 373-386 | MR 2780757 | Zbl 1211.53010

[7] R. Magnanini, G. Talenti, On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties, Contemporary Math. 283 (1999), 203-229 | MR 1724665 | Zbl 0940.35100

[8] R. Magnanini, G. Talenti, Approaching a partial differential equation of mixed elliptic–hyperbolic type, Yu.E. Anikonov, A.L. Bukhageim, S.I. Kabanikhin, V.G. Romanov (ed.), Ill-posed and Inverse Problems, VSP (2002), 263-276

[9] A. Marini, T.H. Otway, Nonlinear Hodge–Frobenius equations and the Hodge–Bäcklund transformation, Proc. R. Soc. Edinburgh A 140 (2010), 787-819 | MR 2672070 | Zbl 1209.58003

[10] A. Marini, T.H. Otway, Constructing completely integrable fields by the method of generalized streamlines, arXiv:1205.7028 [math.AP] | Zbl 1305.35116

[11] A. Milani, R. Picard, Decomposition and their application to nonlinear electro- and magnetostatic boundary value problems, S. Hildebrandt, R. Leis (ed.), Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics vol. 1357, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1988) | Zbl 0684.35084

[12] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin (1966) | MR 202511 | Zbl 0142.38701

[13] T.H. Otway, Nonlinear Hodge maps, J. Math. Phys. 41 (2000), 5745-5766 | MR 1773064 | Zbl 0974.58018

[14] T.H. Otway, Maps and fields with compressible density, Rend. Sem. Mat. Univ. Padova 111 (2004), 133-159 | Numdam | MR 2076737 | Zbl 1121.76056

[15] T.H. Otway, The Dirichlet Problem for Elliptic–Hyperbolic Equations of Keldysh Type, Lecture Notes in Mathematics vol. 2043, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (2012) | MR 2933771 | Zbl 1246.35006

[16] G. Schwarz, Hodge Decomposition: A Method for Solving Boundary Value Problems, Lecture Notes in Mathematics vol. 1607, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1995) | MR 1367287 | Zbl 0828.58002

[17] L.M. Sibner, R.J. Sibner, A nonlinear Hodge–de Rham theorem, Acta Math. 125 (1970), 57-73 | MR 281231 | Zbl 0216.45703

[18] L.M. Sibner, R.J. Sibner, Nonlinear Hodge theory: Applications, Advances in Math. 31 (1979), 1-15 | MR 521463 | Zbl 0408.58032

[19] L.M. Sibner, R.J. Sibner, Y. Yang, Generalized Bernstein property and gravitational strings in Born–Infeld theory, Nonlinearity 20 (2007), 1193-1213 | MR 2312389 | Zbl 1117.58018

[20] Y. Yang, Classical solutions in the Born–Infeld theory, Proc. R. Soc. Lond. Ser. A 456 (2000), 615-640 | MR 1808753 | Zbl 1122.78301