In this work we deal with the existence and qualitative properties of the solutions to a supercritical problem involving the operator and the Hardy–Leray potential. Assuming , we study the regularizing effect due to the addition of a first order nonlinear term, which provides the existence of solutions with a breaking of resonance. Once we have proved the existence of a solution, we study the qualitative properties of the solutions such as regularity, monotonicity and symmetry.
@article{AIHPC_2014__31_1_1_0, author = {Merch\'an, Susana and Montoro, Luigi and Peral, Ireneo and Sciunzi, Berardino}, title = {Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy--Leray potential}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {31}, year = {2014}, pages = {1-22}, doi = {10.1016/j.anihpc.2013.01.003}, mrnumber = {3165277}, zbl = {1291.35082}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_1_1_0} }
Merchán, Susana; Montoro, Luigi; Peral, Ireneo; Sciunzi, Berardino. Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy–Leray potential. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 1-22. doi : 10.1016/j.anihpc.2013.01.003. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_1_1_0/
[1] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 22 no. 2 (1995), 241-273 | Numdam | MR 1354907 | Zbl 0866.35037
, , , , , ,[2] On the method of moving planes and the sliding method, Bull. Soc. Brasil. Mat. (N.S. 22 no. 1 (1991), 1-37 | MR 1159383 | Zbl 0784.35025
, ,[3] Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 no. 19 (1992), 581-597 | MR 1183665 | Zbl 0783.35020
, ,[4] Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Sc. Norm. Super. Pisa 11 no. 2 (1984), 213-235 | Numdam | MR 764943 | Zbl 0557.35051
, , ,[5] Approximated solutions of equations with data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. 170 no. 4 (1996), 207-240 | MR 1441620 | Zbl 0869.35050
,[6] Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 28 no. 4 (1999), 741-808 | Numdam | MR 1760541 | Zbl 0958.35045
, , , ,[7] Monotonicity and symmetry of solutions of p-Laplace equations, , via the moving plane method, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 26 no. 4 (1998), 689-707 | Numdam | MR 1648566 | Zbl 0930.35070
, ,[8] Monotonicity and symmetry results for p-Laplace equations and applications, Adv. Differential Equations 5 no. 7–9 (2000), 1179-1200 | MR 1776351 | Zbl 1002.35045
, ,[9] Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations 206 no. 2 (2004), 483-515 | MR 2096703 | Zbl 1108.35069
, ,[10] Nonlinear elliptic problems with a singular weight on the boundary, Calc. Var. Partial Differential Equations 41 no. 3–4 (2011), 567-586 | MR 2796244 | Zbl 1232.35048
, ,[11] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 no. 8 (1983), 827-850 | MR 709038 | Zbl 0539.35027
,[12] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR 544879 | Zbl 0425.35020
, , ,[13] Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Clarendon Press, Oxford (1993) | MR 1207810 | Zbl 0776.31007
, , ,[14] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 no. 11 (1988), 1203-1219 | MR 969499 | Zbl 0675.35042
,[15] Remarks on the solvability of an elliptic equation with a supercritical term involving the Hardy–Leray potential, J. Math. Anal. Appl. 394 (2012), 347-359 | MR 2926226 | Zbl 1248.35081
, ,[16] S. Merchán, L. Montoro, Remarks on the existence of solutions to some quasilinear elliptic problems involving the Hardy–Leray potential, Ann. Mat. Pura Appl., http://dx.doi.org/10.1007/s10231-012-0293-7. | MR 3180936
[17] Asymptotic symmetry for a class of quasi-linear parabolic problems, Adv. Nonlinear Stud. 10 no. 4 (2010), 789-818 | MR 2683684 | Zbl 1253.35009
, , ,[18] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 no. 1 (1984), 126-150 | MR 727034 | Zbl 0488.35017
,[19] The Maximum Principle, Birkhäuser, Boston (2007) | MR 2356201 | Zbl 1134.35001
, ,[20] Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302 | MR 170096 | Zbl 0128.09101
,[21] A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 no. 4 (1971), 304-318 | MR 333220 | Zbl 0222.31007
,