Pour tout et , , nous considérons une suite de fonctionnelles intégrales définies par où les intégrandes satisfont des conditions de croissance d'ordre p, uniformément en k. Nous démontrons un résultat de Γ-compacité pour par rapport à la topologie faible sur et nous prouvons que sous des conditions appropriées, l'intégrande de la Γ-limite est continûment différentiable. Nous montrons également un résultat de convergence des moments pour les minima de .
For and , , we consider a sequence of integral functionals of the form where the integrands satisfy growth conditions of order p, uniformly in k. We prove a ΓWΓ1,p
@article{AIHPC_2014__31_1_185_0, author = {Ansini, Nadia and Dal Maso, Gianni and Zeppieri, Caterina Ida}, title = {New results on $\Gamma$-limits of integral functionals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {31}, year = {2014}, pages = {185-202}, doi = {10.1016/j.anihpc.2013.02.005}, mrnumber = {3165285}, zbl = {1290.49024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_1_185_0} }
Ansini, Nadia; Dal Maso, Gianni; Zeppieri, Caterina Ida. New results on Γ-limits of integral functionals. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 185-202. doi : 10.1016/j.anihpc.2013.02.005. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_1_185_0/
[1] Γ-convergence and H-convergence of linear elliptic operators, J. Math. Pures Appl. 99 (2013), 321-329 | MR 3017993 | Zbl 1266.35028
, , ,[2] Γ-convergence of functionals on divergence-free fields, ESAIM Control Optim. Calc. Var. 13 (2007), 809-828 | Numdam | MR 2351405 | Zbl 1127.49011
, ,[3] Asymptotic analysis of non-symmetric linear operators via Γ-convergence, SIAM J. Math. Anal. 44 (2012), 1617-1635 | MR 2982725 | Zbl 1247.35018
, ,[4] Quasistatic evolution of a brittle thin film, Calc. Var. Partial Differential Equations 26 (2006), 69-118 | MR 2217484 | Zbl 1089.74037
,[5] A version of the fundamental theorem for Young measures, , , (ed.), PDE's and Continuum Models of Phase Transitions, Lecture Notes in Phys. vol. 344, Springer-Verlag, Berlin (1989), 207-215
,[6] Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations 11 (2000), 333-359 | MR 1808126 | Zbl 0972.49024
, , ,[7] Intégrands normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France 101 (1973), 129-184 | Numdam | MR 344980 | Zbl 0282.49041
, ,[8] Homogenization of Multiple Integrals, Oxford University Press, New York (1998) | MR 1684713 | Zbl 0911.49010
, ,[9] -quasiconvexity: relaxation and homogenization, ESAIM Control Optim. Calc. Var. 5 (2000), 539-577 | Numdam | MR 1799330 | Zbl 0971.35010
, , ,[10] Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli, J. Math. Phys. 35 (1994), 127-145 | MR 1252102 | Zbl 0805.49028
, ,[11] Direct Methods in the Calculus of Variations, Appl. Math. Sci. vol. 78, Springer, New York (2008) | MR 2361288 | Zbl 1140.49001
,[12] An Introduction to Γ-Convergence, Birkhäuser, Boston (1993) | MR 1201152 | Zbl 0816.49001
,[13] Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal. 176 (2005), 165-225 | MR 2186036 | Zbl 1064.74150
, , ,[14] -quasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal. 30 (1999), 1355-1390 | MR 1718306 | Zbl 0940.49014
, ,[15] A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications, Arch. Ration. Mech. Anal. 180 (2006), 399-447 | MR 2214962 | Zbl 1089.74011
, ,[16] On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Comm. Pure Appl. Math. 43 (1990), 63-125 | MR 1024190 | Zbl 0751.73041
,[17] Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant, Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (1981), 68-102 | Numdam | MR 616901 | Zbl 0464.46034
,[18] Compensated compactness and applications to partial differential equations, (ed.), Nonlinerar Analysis and Mechanics: Heriot–Watt Symposium, Pitman Res. Notes Math. Ser. vol. 39, Longman, Harlow (1979), 136-212 | MR 584398 | Zbl 0437.35004
,