The average-distance problem is to find the best way to approximate (or represent) a given measure μ on by a one-dimensional object. In the penalized form the problem can be stated as follows: given a finite, compactly supported, positive Borel measure μ, minimize among connected closed sets, Σ, where , is the distance from x to the set Σ, and is the one-dimensional Hausdorff measure. Here we provide, for any , an example of a measure μ with smooth density, and convex, compact support, such that the global minimizer of the functional is a rectifiable curve which is not . We also provide a similar example for the constrained form of the average-distance problem.
@article{AIHPC_2014__31_1_169_0, author = {Slep\v cev, Dejan}, title = {Counterexample to regularity in average-distance problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {31}, year = {2014}, pages = {169-184}, doi = {10.1016/j.anihpc.2013.02.004}, mrnumber = {3165284}, zbl = {1286.49055}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_1_169_0} }
Slepčev, Dejan. Counterexample to regularity in average-distance problem. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 169-184. doi : 10.1016/j.anihpc.2013.02.004. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_1_169_0/
[1] Optimal transportation problems with free Dirichlet regions, Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl. vol. 51, Birkhäuser, Basel (2002), 41-65 | MR 2197837 | Zbl 1055.49029
, , ,[2] Optimal transportation networks as free Dirichlet regions for the Monge–Kantorovich problem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 no. 4 (2003), 631-678 | Numdam | MR 2040639 | Zbl 1127.49031
, ,[3] A presentation of the average distance minimizing problem, Teoriya Predstavlenii, Dinamicheskie Sistemy, Kombinatornye Metody. XX Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 390 (2011), 117-146, http://dx.doi.org/10.1007/s10958-012-0717-3 | MR 2870232
,[4] Qualitative properties of maximum distance minimizers and average distance minimizers in , J. Math. Sci. (N. Y.) 122 no. 3 (2004), 3290-3309, http://dx.doi.org/10.1023/B:JOTH.0000031022.10122.f5
, ,[5] Some explicit examples of minimizers for the irrigation problem, J. Convex Anal. 17 no. 2 (2010), 583-595 | MR 2675664 | Zbl 1191.49047
,[6] About the regularity of average distance minimizers in , J. Convex Anal. 18 no. 4 (2011), 949-981 | MR 2917861 | Zbl 1238.49054
,[7] Stationary configurations for the average distance functional and related problems, Control Cybernet. 38 no. 4A (2009), 1107-1130 | MR 2779113 | Zbl 1239.49029
, , ,[8] Blow-up of optimal sets in the irrigation problem, J. Geom. Anal. 15 no. 2 (2005), 343-362, http://dx.doi.org/10.1007/BF02922199 | MR 2152486 | Zbl 1115.49029
, ,[9] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York (2000) | MR 1857292 | Zbl 0957.49001
, , ,[10] A First Course in Sobolev Spaces, Grad. Stud. Math. vol. 105, American Mathematical Society, Providence, RI (2009) | MR 2527916 | Zbl 1180.46001
,[11] Steiner minimal trees, SIAM J. Appl. Math. 16 (1968), 1-29 | MR 223269 | Zbl 0159.22001
, ,[12] The Steiner Tree Problem, Ann. Discrete Math. vol. 53, North-Holland Publishing Co., Amsterdam (1992) | MR 1192785
, , ,