Existence and bifurcation of positive solutions to a Kirchhoff type equation are considered by using topological degree argument and variational method. Here f is a continuous function which is asymptotically linear at zero and is asymptotically 3-linear at infinity. The new results fill in a gap of recent research about the Kirchhoff type equation in bounded domain, and in our results the nonlinearity may be resonant near zero or infinity.
@article{AIHPC_2014__31_1_155_0, author = {Liang, Zhanping and Li, Fuyi and Shi, Junping}, title = {Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {31}, year = {2014}, pages = {155-167}, doi = {10.1016/j.anihpc.2013.01.006}, mrnumber = {3165283}, zbl = {1288.35456}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2014__31_1_155_0} }
Liang, Zhanping; Li, Fuyi; Shi, Junping. Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) pp. 155-167. doi : 10.1016/j.anihpc.2013.01.006. http://gdmltest.u-ga.fr/item/AIHPC_2014__31_1_155_0/
[1] Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 no. 1 (2005), 85-93 | MR 2123187 | Zbl 1130.35045
, , ,[2] Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 no. 4 (1976), 620-709 | MR 415432 | Zbl 0345.47044
,[3] The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 no. 4 (2011), 1876-1908 | MR 2763559 | Zbl 1214.35077
, , ,[4] Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 no. 10 (2009), 4883-4892 | MR 2548720 | Zbl 1175.35038
, ,[5] Multiplicity of solutions for -polyharmonic elliptic Kirchhoff equations, Nonlinear Anal. 74 no. 17 (2011), 5962-5974 | MR 2833367 | Zbl 1232.35052
, ,[6] Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 no. 2 (1992), 247-262 | MR 1161092 | Zbl 0785.35067
, ,[7] On global solvability of nonlinear viscoelastic equations in the analytic category, Math. Methods Appl. Sci. 17 no. 6 (1994), 477-486 | MR 1274154 | Zbl 0803.35091
, ,[8] Nonlinear Functional Analysis, Springer-Verlag, Berlin (1985) | MR 787404 | Zbl 0559.47040
,[9] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR 544879 | Zbl 0425.35020
, , ,[10] Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 no. 3 (2009), 1407-1414 | MR 2474927 | Zbl 1157.35382
, ,[11] Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. Engl. Ser. 26 no. 3 (2010), 387-394 | MR 2657696 | Zbl 1196.35077
, ,[12] Positive solutions of quasilinear elliptic equations, Topol. Methods Nonlinear Anal. 12 no. 1 (1998), 91-107 | MR 1677739 | Zbl 0929.35039
,[13] Positive solution for with growing as at infinity, Appl. Math. Lett. 17 no. 8 (2004), 881-887 | MR 2082506 | Zbl 1122.35333
, ,[14] Local conditions insuring bifurcation from the continuous spectrum, Math. Z. 232 no. 4 (1999), 651-664 | MR 1727546 | Zbl 0934.35047
,[15] Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16 no. 2 (2003), 243-248 | MR 1962322 | Zbl 1135.35330
, ,[16] Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 no. 3 (2009), 1275-1287 | MR 2474918 | Zbl 1160.35421
, ,[17] Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 no. 1 (2006), 246-255 | MR 2193850 | Zbl 1357.35131 | Zbl 05013580
, ,[18] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. vol. 65, Amer. Math. Soc., Washington, DC (1986) | MR 845785 | Zbl 0609.58002
,[19] Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin (1990) | MR 1078018 | Zbl 0746.49010
,[20] Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. 74 no. 4 (2011), 1212-1222 | MR 2746801 | Zbl 1209.35033
, ,[21] Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett. 23 no. 4 (2010), 377-380 | MR 2594846 | Zbl 1188.35084
, ,[22] Nonlinear functional analysis and its applications, II/B, Nonlinear Monotone Operators, Springer-Verlag, New York (1990) | MR 1033497 | Zbl 0684.47029
,[23] Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 no. 2 (2006), 456-463 | MR 2208932 | Zbl 1100.35008
, ,