We study the limit of global minimizers for a p-Ginzburg–Landau-type energy The minimization is carried over maps on that vanish at the origin and are of degree one at infinity. We prove locally uniform convergence of the minimizers on and obtain an explicit formula for the limit on . Some generalizations to dimension are presented as well.
@article{AIHPC_2013__30_6_1159_0, author = {Almog, Yaniv and Berlyand, Leonid and Golovaty, Dmitry and Shafrir, Itai}, title = {On the limit $ p\to \infty $ of global minimizers for a p-Ginzburg--Landau-type energy}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {30}, year = {2013}, pages = {1159-1174}, doi = {10.1016/j.anihpc.2012.12.013}, mrnumber = {3132420}, zbl = {1288.35441}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2013__30_6_1159_0} }
Almog, Yaniv; Berlyand, Leonid; Golovaty, Dmitry; Shafrir, Itai. On the limit $ p\to \infty $ of global minimizers for a p-Ginzburg–Landau-type energy. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) pp. 1159-1174. doi : 10.1016/j.anihpc.2012.12.013. http://gdmltest.u-ga.fr/item/AIHPC_2013__30_6_1159_0/
[1] Global minimizers for a p-Ginzburg–Landau-type energy in , J. Funct. Anal. 256 (2009), 2268-2290 | MR 2498765 | Zbl 1160.49003
, , , ,[2] Radially symmetric minimizers for a p-Ginzburg–Landau type energy in , Calc. Var. Partial Differential Equations 42 (2011), 517-546 | MR 2846265 | Zbl 1237.35149
, , , ,[3] Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge vol. 30, Springer-Verlag, New York (1965) | MR 192009 | Zbl 0513.26003
, ,[4] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer (2011) | MR 2759829 | Zbl 1220.46002
,[5] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin (2001) | Zbl 1042.35002 | Zbl 0691.35001
, ,[6] Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, New York (2001) | MR 1859913 | Zbl 1045.30011
, ,[7] Les minimiseurs locaux pour lʼéquation de Ginzburg–Landau sont à symétrie radiale, C. R. Acad. Sci. Paris, Sér. I Math. 323 (1996), 593-598 | MR 1411048 | Zbl 0858.35038
,[8] Locally minimising solutions of in , Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 349-358 | MR 1621347 | Zbl 0905.35018
,