On donne les détails de la preuve de lʼéquation (29) dans Caponio et al. (2010) [3].
We give the details of the proof of equality (29) in Caponio et al. (2010) [3].
@article{AIHPC_2013__30_5_961_0,
author = {Caponio, Erasmo and Javaloyes, Miguel \'Angel and Masiello, Antonio},
title = {Addendum to ``Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric'' [Ann. I. H. Poincar\'e -- AN 27 (3) (2010) 857--876]},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {30},
year = {2013},
pages = {961-968},
doi = {10.1016/j.anihpc.2013.03.005},
zbl = {1286.58007},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2013__30_5_961_0}
}
Caponio, Erasmo; Javaloyes, Miguel Ángel; Masiello, Antonio. Addendum to “Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric” [Ann. I. H. Poincaré – AN 27 (3) (2010) 857–876]. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) pp. 961-968. doi : 10.1016/j.anihpc.2013.03.005. http://gdmltest.u-ga.fr/item/AIHPC_2013__30_5_961_0/
[1] , , A smooth pseudo-gradient for the Lagrangian action functional, Adv. Nonlinear Stud. 9 (2009), 597-623 | Zbl 1185.37145
[2] , , , On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann. 351 (2011), 365-392 | Zbl 1228.53052
[3] , , , Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 857-876 | Numdam | Zbl 1196.58005
[4] , A variant mountain pass lemma, Sci. Sinica Ser. A 26 (1983), 1241-1255 | Zbl 0544.35044
[5] , Infinite-Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, MA (1993)
[6] , versus isolated critical points, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 441-446 | Zbl 0810.35025
[7] , The Morse index theorem for general end conditions, Houston J. Math. 27 (2001), 807-821 | Zbl 1007.58008
[8] , Riemannian Geometry, Birkhäuser, Boston, MA (1992)
[9] , Differential and Riemannian Manifolds, Grad. Texts in Math., Springer-Verlag, New York (1995) | Zbl 0824.58003
[10] , , , Splitting theorem, Poincaré–Hopf theorem and jumping nonlinear problems, J. Funct. Anal. 221 (2005), 439-455 | Zbl 1129.35392
[11] , , Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci., Springer-Verlag, New York (1989) | Zbl 0676.58017
[12] , Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16 | Zbl 0138.18302
[13] , Morse theory in Hilbert space, Rocky Mountain J. Math. 3 (1973), 251-274 | Zbl 0281.49027