On donne les détails de la preuve de lʼéquation (29) dans Caponio et al. (2010) [3].
We give the details of the proof of equality (29) in Caponio et al. (2010) [3].
@article{AIHPC_2013__30_5_961_0, author = {Caponio, Erasmo and Javaloyes, Miguel \'Angel and Masiello, Antonio}, title = {Addendum to ``Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric'' [Ann. I. H. Poincar\'e -- AN 27 (3) (2010) 857--876]}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {30}, year = {2013}, pages = {961-968}, doi = {10.1016/j.anihpc.2013.03.005}, zbl = {1286.58007}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2013__30_5_961_0} }
Caponio, Erasmo; Javaloyes, Miguel Ángel; Masiello, Antonio. Addendum to “Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric” [Ann. I. H. Poincaré – AN 27 (3) (2010) 857–876]. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) pp. 961-968. doi : 10.1016/j.anihpc.2013.03.005. http://gdmltest.u-ga.fr/item/AIHPC_2013__30_5_961_0/
[1] A smooth pseudo-gradient for the Lagrangian action functional, Adv. Nonlinear Stud. 9 (2009), 597-623 | Zbl 1185.37145
, ,[2] On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann. 351 (2011), 365-392 | Zbl 1228.53052
, , ,[3] Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 857-876 | Numdam | Zbl 1196.58005
, , ,[4] A variant mountain pass lemma, Sci. Sinica Ser. A 26 (1983), 1241-1255 | Zbl 0544.35044
,[5] Infinite-Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, MA (1993)
,[6] versus isolated critical points, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 441-446 | Zbl 0810.35025
,[7] The Morse index theorem for general end conditions, Houston J. Math. 27 (2001), 807-821 | Zbl 1007.58008
,[8] Riemannian Geometry, Birkhäuser, Boston, MA (1992)
,[9] Differential and Riemannian Manifolds, Grad. Texts in Math., Springer-Verlag, New York (1995) | Zbl 0824.58003
,[10] Splitting theorem, Poincaré–Hopf theorem and jumping nonlinear problems, J. Funct. Anal. 221 (2005), 439-455 | Zbl 1129.35392
, , ,[11] Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci., Springer-Verlag, New York (1989) | Zbl 0676.58017
, ,[12] Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16 | Zbl 0138.18302
,[13] Morse theory in Hilbert space, Rocky Mountain J. Math. 3 (1973), 251-274 | Zbl 0281.49027
,