This paper deals with the homogenization of nonlinear convex energies defined in , for a regular bounded open set Ω of , the densities of which are not equi-bounded from above, and which satisfy the following weak coercivity condition: There exists if , and if , such that any sequence of bounded energy is compact in . Under this assumption the Γ-convergence of the functionals for the strong topology of is proved to agree with the Γ-convergence for the strong topology of . This leads to an integral representation of the Γ-limit in thanks to a local convex density. An example based on a thin cylinder with very low and very large energy densities, which concentrates to a line shows that the loss of the weak coercivity condition can induce nonlocal effects.
@article{AIHPC_2013__30_4_547_0, author = {Briane, Marc and Casado-D\'\i az, Juan}, title = {Homogenization of convex functionals which are weakly coercive and not equi-bounded from above}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {30}, year = {2013}, pages = {547-571}, doi = {10.1016/j.anihpc.2012.10.005}, mrnumber = {3082476}, zbl = {1288.35039}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2013__30_4_547_0} }
Briane, Marc; Casado-Díaz, Juan. Homogenization of convex functionals which are weakly coercive and not equi-bounded from above. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) pp. 547-571. doi : 10.1016/j.anihpc.2012.10.005. http://gdmltest.u-ga.fr/item/AIHPC_2013__30_4_547_0/
[1] An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal. 18 no. 5 (1992), 481-496 | MR 1152723 | Zbl 0779.35011
, , , ,[2] Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 no. 6 (1992), 1482-1518 | MR 1185639 | Zbl 0770.35005
,[3] Un théorème de compacité, C. R. Math. Acad. Sci. Paris 256 (1963), 5042-5044 | MR 152860 | Zbl 0195.13002
,[4] Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Sc. Norm. Super. Pisa Cl. Sci. 26 no. 4 (1998), 407-436 | Numdam | MR 1635769 | Zbl 0919.35014
, ,[5] Espaces de Dirichlet, Acta Matematica 99 (1958), 203-224 | MR 98924 | Zbl 0089.08106
, ,[6] Γ-Convergence for Beginners, Oxford University Press, Oxford (2002) | MR 1968440
,[7] Homogenization of non-linear variational problems with thin low-conducting layers, Appl. Math. Optim. 55 no. 1 (2007), 1-29 | MR 2289330 | Zbl 1112.35015
, ,[8] Homogenization of non-uniformly bounded periodic diffusion energies in dimension two, Nonlinearity 22 (2009), 1459-1480 | MR 2507329 | Zbl 1221.35048
, , ,[9] A variational approach to double-porosity problems, Asymptot. Anal. 39 no. 3–4 (2004), 281-308 | MR 2097996 | Zbl 1113.35014
, , ,[10] Homogenization of Multiple Integrals, Oxford University Press, Oxford (1998) | MR 1684713 | Zbl 0911.49010
, ,[11] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York (2011) | MR 2759829 | Zbl 1220.46002
,[12] Nonlocal effects in two-dimensional conductivity, Arch. Ration. Mech. Anal. 182 no. 2 (2006), 255-267 | MR 2259333 | Zbl 1142.35381
,[13] Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization, Comm. Partial Differential Equations 32 (2007), 935-969 | MR 2334838 | Zbl 1127.35070
, ,[14] Asymptotic behavior of equicoercive diffusion energies in two dimension, Calc. Var. Partial Differential Equations 29 no. 4 (2007), 455-479 | MR 2329805 | Zbl 1186.35012
, ,[15] Γ-limits of integral functionals, J. Anal. Math. 37 (1980), 145-185 | MR 583636 | Zbl 0446.49012
, ,[16] Closure of the set of diffusion functionals with respect to the Mosco-convergence, Math. Models Methods Appl. Sci. 12 no. 8 (2002), 1153-1176 | MR 1924605 | Zbl 1032.35033
, ,[17] Some properties of Γ-limits of integral functionals, Ann. Mat. Pura Appl. 122 (1979), 1-60 | MR 565062 | Zbl 0474.49016
, ,[18] An Introduction to Γ-Convergence, Birkhäuser, Boston (1993) | MR 1201152
,[19] Sulla convergenza di alcune successioni di integrali del tipo dellʼarea, Rend. Mat. Roma 8 (1975), 277-294 | MR 375037 | Zbl 0316.35036
,[20] Γ-convergenza e G-convergenza, Boll. Unione Mat. Ital. A 14 (1977), 213-220 | MR 458348
,[21] Su un tipo di convergenza variazionale, Rend. Acc. Naz. Lincei Roma 58 no. 6 (1975), 842-850 | MR 448194 | Zbl 0339.49005
, ,[22] Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness, Dokl. AN Ukr. SSR 4 (1981) | Zbl 0455.35010
, ,[23] Irregular solutions of linear degenerate elliptic equations, Potential Anal. 9 (1998), 201-216 | MR 1666899 | Zbl 0919.35050
, , ,[24] Homogenized models of composite media, , (ed.), Composite Media and Homogenization Theory, Progr. Nonlinear Differential Equations Appl., Birkhäuser (1991), 159-182 | MR 1145750 | Zbl 0737.73009
,[25] Homogenization of Partial Differential Equations, Prog. Math. Phys. vol. 46, Birkhäuser, Boston (2006) | MR 2182441 | Zbl 0571.35019
, ,[26] A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397-403 | MR 188994 | Zbl 0152.21403
, ,[27] Weakly monotone functions, J. Geom. Anal. 4 no. 3 (1994), 393-402 | MR 1294334 | Zbl 0805.35013
,[28] Composite media and asymptotic Dirichlet forms, J. Funct. Anal. 123 no. 2 (1994), 368-421 | MR 1283033 | Zbl 0808.46042
,[29] H-convergence, Séminaire dʼAnalyse Fonctionnelle et Numérique, Université dʼAlger (1977)(1978) , , H-convergence, , (ed.), Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl. vol. 31, Birkhäuser, Boston (1998), 21-43
,[30] Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 no. 3 (1968), 571-597 | Numdam | MR 240443 | Zbl 0174.42101
,[31] The General Theory of Homogenization: A Personalized Introduction, Lect. Notes Unione Mat. Ital., Springer-Verlag, Berlin, Heidelberg (2009) | MR 2582099 | Zbl 1188.35004
,[32] Connectedness and averaging. Examples of fractal conductivity, Mat. Sb. 187 no. 8 (1996), 3-40, Sb. Math. 187 no. 8 (1996), 1109-1147 | MR 1418340 | Zbl 0874.35011
,[33] On an extension and an application of the two-scale convergence method, Mat. Sb. 191 no. 7 (2000), 31-72, Sb. Math. 191 no. 7–8 (2000), 973-1014 | MR 1809928 | Zbl 0969.35048
,