We consider spectral optimization problems with internal inclusion constraints, of the form where the set D is fixed, possibly unbounded, and is the k-th eigenvalue of the Dirichlet Laplacian on Ω. We analyze the existence of a solution and its qualitative properties, and rise some open questions.
@article{AIHPC_2013__30_3_477_0, author = {Bucur, Dorin and Buttazzo, Giuseppe and Velichkov, Bozhidar}, title = {Spectral optimization problems with internal constraint}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {30}, year = {2013}, pages = {477-495}, doi = {10.1016/j.anihpc.2012.10.002}, zbl = {1287.49049}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2013__30_3_477_0} }
Bucur, Dorin; Buttazzo, Giuseppe; Velichkov, Bozhidar. Spectral optimization problems with internal constraint. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) pp. 477-495. doi : 10.1016/j.anihpc.2012.10.002. http://gdmltest.u-ga.fr/item/AIHPC_2013__30_3_477_0/
[1] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144 | Zbl 0449.35105
, ,[2] Open problems on eigenvalues of the Laplacian, Analytic and Geometric Inequalities and Applications, Math. Appl. vol. 478, Kluwer Acad. Publ., Dordrecht (1999), 13-28 | Zbl 1158.35396
,[3] Stopping times and Γ-convergence, Trans. Amer. Math. Soc. 303 no. 1 (1987), 1-38 | Zbl 0627.60071
, ,[4] Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 4 (2009), 1149-1163 | Zbl 1194.49059
, ,[5] Uniform concentration-compactness for Sobolev spaces on variable domains, J. Differential Equations 162 (2000), 427-450 | Zbl 0957.49027
,[6] Minimization of the k-th eigenvalue of the Dirichlet Laplacian, Arch. Ration. Mech. Anal. 206 no. 3 (2012), 1073-1083 | Zbl 1254.35165
,[7] Variational Methods in Shape Optimization Problems, Progr. Nonlinear Differential Equations Appl. vol. 65, Birkhäuser Verlag, Basel (2005) | Zbl 1117.49001
, ,[8] On the attainable eigenvalues of the Laplace operator, SIAM J. Math. Anal. 30 no. 3 (1999), 527-536 | Zbl 0920.35099
, , ,[9] Spectral optimization problems, Rev. Mat. Complut. 24 no. 2 (2011), 277-322 | Zbl 1226.49038
,[10] Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991), 17-49 | Zbl 0762.49017
, ,[11] An existence result for a class of shape optimization problems, Arch. Ration. Mech. Anal. 122 (1993), 183-195 | Zbl 0811.49028
, ,[12] An Introduction to Γ-Convergence, Birkhäuser, Boston (1993)
,[13] Wienerʼs criterion and Γ-convergence, Appl. Math. Optim. 15 (1987), 15-63
, ,[14] Asymptotic behavior and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. 24 (1997), 239-290 | Numdam | Zbl 0899.35007
, ,[15] Heat Kernels and Spectral Theory, Cambridge University Press (1989) | Zbl 0699.35006
,[16] Finely Harmonic Functions, Lecture Notes in Math. vol. 289, Springer-Verlag, Berlin–New York (1972) | Zbl 0248.31010
,[17] Minimization problems for eigenvalues of the Laplacian, J. Evol. Equ. 3 no. 3 (2003), 443-461 | Zbl 1049.49029
,[18] Extremum Problems for Eigenvalues of Elliptic Operators, Front. Math., Birkhäuser Verlag, Basel (2006) | Zbl 1109.35081
,[19] Variation et Optimisation de Formes, Anal. Geom., Math. Appl. vol. 48, Springer-Verlag, Berlin (2005)
, ,[20] A theorem on fine connectedness, Potential Anal. 12 no. 3 (2000), 221-232 | Zbl 0952.31007
,[21] Existence of minimizers for spectral problems, http://cvgmt.sns.it (2011)
, ,[22] The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 no. 2 (1984), 109-145 | Numdam | Zbl 0541.49009
,[23] Weakly Differentiable Functions, Springer-Verlag, Berlin (1989) | Zbl 0177.08006
,