We study the nodal solutions of the Lane–Emden–Dirichlet problem where Ω is a smooth bounded domain in and . We consider solutions satisfying and we are interested in the shape and the asymptotic behavior as .First we prove that (⁎) holds for least energy nodal solutions. Then we obtain some estimates and the asymptotic profile of this kind of solutions. Finally, in some cases, we prove that can be characterized as the difference of two Greenʼs functions and the nodal line intersects the boundary of Ω, for large p.
@article{AIHPC_2013__30_1_121_0, author = {Grossi, Massimo and Grumiau, Christopher and Pacella, Filomena}, title = {Lane--Emden problems: Asymptotic behavior of low energy nodal solutions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {30}, year = {2013}, pages = {121-140}, doi = {10.1016/j.anihpc.2012.06.005}, mrnumber = {3011294}, zbl = {1266.35106}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2013__30_1_121_0} }
Grossi, Massimo; Grumiau, Christopher; Pacella, Filomena. Lane–Emden problems: Asymptotic behavior of low energy nodal solutions. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) pp. 121-140. doi : 10.1016/j.anihpc.2012.06.005. http://gdmltest.u-ga.fr/item/AIHPC_2013__30_1_121_0/
[1] Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc. 132 no. 4 (2004), 1013-1019 | MR 2045416 | Zbl 1083.35035
, ,[2] Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, C. R. Math. Acad. Sci. Paris 339 no. 5 (2004), 339-344 | MR 2092460 | Zbl 1113.35063
, ,[3] A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 no. 1 (2003), 1-14 | MR 2037264 | Zbl 1094.35041
, ,[4] Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math. 96 (2005), 1-18 | MR 2177179 | Zbl 1206.35086
, , ,[5] Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 no. 4 (2006), 567-589 | Zbl 1157.35357
, , ,[6] Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 no. 4 (2006), 567-589 | MR 2245756 | Zbl 1157.35357
, , ,[7] Classification of low energy sign-changing solutions of an almost critical problem, J. Funct. Anal. 250 no. 2 (2007), 347-373 | MR 2352484 | Zbl 1155.35371
, , ,[8] Asymptotics and symmetries of least energy nodal solutions of Lane–Emden problems with slow growth, Commun. Contemp. Math. 10 no. 4 (2008), 609-631 | MR 2444849 | Zbl 1156.35037
, , , ,[9] Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications, Masson, Paris (1983) | MR 697382 | Zbl 0511.46001
,[10] A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 no. 4 (1997), 1041-1053 | MR 1627654 | Zbl 0907.35050
, , ,[11] Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, Adv. Nonlinear Stud. 4 no. 1 (2004), 15-36 | MR 2033557 | Zbl 1065.35112
, ,[12] Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations 227 no. 1 (2006), 29-68 | MR 2233953 | Zbl 1254.35083
, , ,[13] On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity, Proc. Lond. Math. Soc. (3) 94 no. 2 (2007), 497-519 | MR 2311000 | Zbl 05145509
, , ,[14] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR 544879 | Zbl 0425.35020
, , ,[15] Oddness of least energy nodal solutions on radial domains, Electron. J. Differ. Equ. Conf. 18 (2010), 23-31 | MR 2660848 | Zbl 1198.35097
, ,[16] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 no. 2 (1991), 159-174 | Numdam | MR 1096602 | Zbl 0729.35014
,[17] Convergence for a Liouville equation, Comment. Math. Helv. 76 no. 3 (2001), 506-514 | MR 1854696 | Zbl 0987.35056
, ,[18] On the nodal line of the second eigenfunction of the Laplacian in , J. Differential Geom. 35 no. 1 (1992), 255-263 | MR 1152231 | Zbl 0769.58056
,[19] Symmetry of solutions to semilinear elliptic equations via Morse index, Proc. Amer. Math. Soc. 135 no. 6 (2007), 1753-1762 | MR 2286085 | Zbl 1190.35096
, ,[20] Single-point condensation and least-energy solutions, Proc. Amer. Math. Soc. 124 no. 1 (1996), 111-120 | MR 1301045 | Zbl 0845.35012
, ,[21] On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc. 343 no. 2 (1994), 749-763 | MR 1232190 | Zbl 0804.35042
, ,