Dans cet article, on étudie les mesures minimisantes de Hamiltoniens de Tonelli. Plus précisément, on explique quelles relations existent entre les fibrés de Green et différentes notions comme :•les exposants de Lyapunov des mesures minimisantes ;•les solutions KAM faibles. On en déduit par exemple que si tous les exposants de Lyapunov dʼune mesure minimisante μ sont nuls, alors le support de cette mesure est -régulier en μ-presque tout point.
In this article, we study the minimizing measures of the Tonelli Hamiltonians. More precisely, we study the relationships between the so-called Green bundles and various notions as:•the Lyapunov exponents of minimizing measures;•the weak KAM solutions. In particular, we deduce that the support of every minimizing measure μ, all of whose Lyapunov exponents are zero, is -regular μ-almost everywhere.
@article{AIHPC_2012__29_6_989_0, author = {Arnaud, M.-C.}, title = {Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {29}, year = {2012}, pages = {989-1007}, doi = {10.1016/j.anihpc.2012.04.007}, mrnumber = {2995103}, zbl = {1269.37031}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_6_989_0} }
Arnaud, M.-C. Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 989-1007. doi : 10.1016/j.anihpc.2012.04.007. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_6_989_0/
[1] Fibrés de Green et régularité des graphes -Lagrangiens invariants par un flot de Tonelli, Ann. Henri Poincaré 9 no. 5 (2008), 881-926 | MR 2438501
,[2] Three results on the regularity of the curves that are invariant by an exact symplectic twist map, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 1-17 | Numdam | MR 2511585 | Zbl 1177.53070
,[3] The link between the shape of the Aubry–Mather sets and their Lyapunov exponents, Ann. of Math. 174 no. 3 (2011), 1571-1601 | MR 2846487 | Zbl 1257.37028
,[4] The dynamics of pseudographs in convex Hamiltonian systems, J. Amer. Math. Soc. 21 no. 3 (2008), 615-669 | MR 2393423 | Zbl 1213.37089
,[5] Surface transformations and their dynamical application, Acta Math. 43 (1920), 1-119 | JFM 47.0985.03 | MR 1555175
,[6] Lyapunov exponents: how frequently are dynamical systems hyperbolic?, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge (2004), 271-297 | MR 2090775 | Zbl 1147.37315
, ,[7] Introduction à la géométrie infinitésimale directe, Librairie Vuibert, Paris (1932) | JFM 58.0086.03
,[8] Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems 19 no. 4 (1999), 901-952 | MR 1709426 | Zbl 1044.37046
, ,[9] When is a geodesic flow of Anosov type? I, J. Differential Geom. 8 (1973), 437-463 , When is a geodesic flow of Anosov type? II, J. Differential Geom. 8 (1973), 565-577 | MR 380891 | Zbl 0285.58008
,[10] A. Fathi, Weak KAM Theorems in Lagrangian Dynamics, in preparation.
[11] Regularity of solutions of the Hamilton–Jacobi equation, Ann. Fac. Sci. Toulouse Math. (6) 12 no. 4 (2003), 479-516 | Numdam | MR 2060597 | Zbl 1059.37047
,[12] On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 no. 3 (1982), 375-392 | MR 679763 | Zbl 0476.58019
, ,[13] A theorem of E. Hopf, Michigan Math. J. 5 (1958), 31-34 | MR 97833 | Zbl 0134.39601
,[14] Sur les courbes invariantes par les difféomorphismes de lʼanneau, vol. 1, Asterisque 103–104 (1983) | MR 728564
,[15] Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques, vol. I, Inst. Hautes Études Sci. Publ. Math. 70 (1989), 47-101 | Numdam | MR 1067380 | Zbl 0717.58020
,[16] A geometric proof of the existence of the Green bundles, Proc. Amer. Math. Soc. 130 no. 8 (2002), 2311-2312 | MR 1896413 | Zbl 1067.37037
,[17] Global Variational Methods in Conservative Dynamics, 18 Coloquio Brasileiro de Matematica, IMPA (1991)
,[18] Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc. 229 (1977), 351-370 | MR 482849 | Zbl 0356.58009
,[19] Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 no. 2 (1991), 169-207 | MR 1109661 | Zbl 0696.58027
,