Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures
Arnaud, M.-C.
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012), p. 989-1007 / Harvested from Numdam

Dans cet article, on étudie les mesures minimisantes de Hamiltoniens de Tonelli. Plus précisément, on explique quelles relations existent entre les fibrés de Green et différentes notions comme :•les exposants de Lyapunov des mesures minimisantes ;•les solutions KAM faibles. On en déduit par exemple que si tous les exposants de Lyapunov dʼune mesure minimisante μ sont nuls, alors le support de cette mesure est C 1 -régulier en μ-presque tout point.

In this article, we study the minimizing measures of the Tonelli Hamiltonians. More precisely, we study the relationships between the so-called Green bundles and various notions as:•the Lyapunov exponents of minimizing measures;•the weak KAM solutions. In particular, we deduce that the support of every minimizing measure μ, all of whose Lyapunov exponents are zero, is C 1 -regular μ-almost everywhere.

Publié le : 2012-01-01
DOI : https://doi.org/10.1016/j.anihpc.2012.04.007
Classification:  37J50,  35D40,  37C40,  34D08,  35D65
Mots clés: Orbites et mesures minimisantes, Exposants de Lyapunov, Théorie KAM faible, Fibrés de Green, Régularité des solutions de lʼéquation de Hamilton–Jacobi
@article{AIHPC_2012__29_6_989_0,
     author = {Arnaud, M.-C.},
     title = {Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {29},
     year = {2012},
     pages = {989-1007},
     doi = {10.1016/j.anihpc.2012.04.007},
     mrnumber = {2995103},
     zbl = {1269.37031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_6_989_0}
}
Arnaud, M.-C. Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 989-1007. doi : 10.1016/j.anihpc.2012.04.007. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_6_989_0/

[1] M.-C. Arnaud, Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli, Ann. Henri Poincaré 9 no. 5 (2008), 881-926 | MR 2438501

[2] M.-C. Arnaud, Three results on the regularity of the curves that are invariant by an exact symplectic twist map, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 1-17 | Numdam | MR 2511585 | Zbl 1177.53070

[3] M.-C. Arnaud, The link between the shape of the Aubry–Mather sets and their Lyapunov exponents, Ann. of Math. 174 no. 3 (2011), 1571-1601 | MR 2846487 | Zbl 1257.37028

[4] P. Bernard, The dynamics of pseudographs in convex Hamiltonian systems, J. Amer. Math. Soc. 21 no. 3 (2008), 615-669 | MR 2393423 | Zbl 1213.37089

[5] G.D. Birkhoff, Surface transformations and their dynamical application, Acta Math. 43 (1920), 1-119 | JFM 47.0985.03 | MR 1555175

[6] J. Bochi, M. Viana, Lyapunov exponents: how frequently are dynamical systems hyperbolic?, Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge (2004), 271-297 | MR 2090775 | Zbl 1147.37315

[7] G. Bouligand, Introduction à la géométrie infinitésimale directe, Librairie Vuibert, Paris (1932) | JFM 58.0086.03

[8] G. Contreras, R. Iturriaga, Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems 19 no. 4 (1999), 901-952 | MR 1709426 | Zbl 1044.37046

[9] P. Eberlein, When is a geodesic flow of Anosov type? I, J. Differential Geom. 8 (1973), 437-463 P. Eberlein, When is a geodesic flow of Anosov type? II, J. Differential Geom. 8 (1973), 565-577 | MR 380891 | Zbl 0285.58008

[10] A. Fathi, Weak KAM Theorems in Lagrangian Dynamics, in preparation.

[11] A. Fathi, Regularity of C 1 solutions of the Hamilton–Jacobi equation, Ann. Fac. Sci. Toulouse Math. (6) 12 no. 4 (2003), 479-516 | Numdam | MR 2060597 | Zbl 1059.37047

[12] A. Freire, R. Mañé, On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 no. 3 (1982), 375-392 | MR 679763 | Zbl 0476.58019

[13] L.W. Green, A theorem of E. Hopf, Michigan Math. J. 5 (1958), 31-34 | MR 97833 | Zbl 0134.39601

[14] M. Herman, Sur les courbes invariantes par les difféomorphismes de lʼanneau, vol. 1, Asterisque 103–104 (1983) | MR 728564

[15] M. Herman, Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques, vol. I, Inst. Hautes Études Sci. Publ. Math. 70 (1989), 47-101 | Numdam | MR 1067380 | Zbl 0717.58020

[16] R. Iturriaga, A geometric proof of the existence of the Green bundles, Proc. Amer. Math. Soc. 130 no. 8 (2002), 2311-2312 | MR 1896413 | Zbl 1067.37037

[17] R. Mañé, Global Variational Methods in Conservative Dynamics, 18 Coloquio Brasileiro de Matematica, IMPA (1991)

[18] R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc. 229 (1977), 351-370 | MR 482849 | Zbl 0356.58009

[19] J.N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 no. 2 (1991), 169-207 | MR 1109661 | Zbl 0696.58027