In this paper, we consider the rolling problem (R) without spinning nor slipping of a smooth connected oriented complete Riemannian manifold onto a space form of the same dimension . This amounts to study an n-dimensional distribution , that we call the rolling distribution, and which is defined in terms of the Levi-Civita connections and . We then address the issue of the complete controllability of the control system associated to . The key remark is that the state space Q carries the structure of a principal bundle compatible with . It implies that the orbits obtained by rolling along loops of become Lie subgroups of the structure group of . Moreover, these orbits can be realized as holonomy groups of either certain vector bundle connections , called the rolling connections, when the curvature of the space form is non-zero, or of an affine connection (in the sense of Kobayashi and Nomizu, 1996 [14]) in the zero curvature case. As a consequence, we prove that the rolling (R) onto an Euclidean space is completely controllable if and only if the holonomy group of is equal to . Moreover, when has positive (constant) curvature we prove that, if the action of the holonomy group of is not transitive, then admits as its universal covering. In addition, we show that, for n even and , the rolling problem (R) of against the space form of positive curvature , is completely controllable if and only if is not of constant curvature c.
@article{AIHPC_2012__29_6_927_0, author = {Chitour, Yacine and Kokkonen, Petri}, title = {Rolling manifolds on space forms}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {29}, year = {2012}, pages = {927-954}, doi = {10.1016/j.anihpc.2012.05.005}, mrnumber = {2995101}, zbl = {1321.53021}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_6_927_0} }
Chitour, Yacine; Kokkonen, Petri. Rolling manifolds on space forms. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 927-954. doi : 10.1016/j.anihpc.2012.05.005. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_6_927_0/
[1] A motion planning algorithm for the rolling-body problem, IEEE Trans. Robot. 26 no. 5 (2010)
, , ,[2] A. Agrachev, Y. Sachkov, An intrinsic approach to the control of rolling bodies, in: Proceedings of the CDC, vol. 1, Phoenix, 1999, pp. 431–435.
[3] Control Theory from the Geometric Viewpoint. Control Theory and Optimization, II, Encyclopaedia Math. Sci. vol. 87, Springer-Verlag, Berlin (2004) | MR 2062547 | Zbl 1062.93001
, ,[4] Sur les groupes dʼholonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279-330 | Numdam | MR 79806 | Zbl 0068.36002
,[5] Geometry of Manifolds with Special Holonomy: “100 Years of Holonomy”, Contemp. Math. vol. 395 (2006) | MR 2206889 | Zbl 1096.53027
,[6] Rigidity of integral curves of rank 2 distributions, Invent. Math. 114 no. 2 (1993), 435-461 | MR 1240644 | Zbl 0807.58007
, ,[7] La géométrie des espaces de Riemann, Mémorial des Sciences Mathématiques 9 (1925), 1-61 | JFM 51.0566.01
,[8] On the controllability and trajectories generation of rolling surfaces, Forum Math. 15 (2003), 727-758 | MR 2010032 | Zbl 1044.93015
, ,[9] Extension of de Rham decomposition theorem to non Euclidean development, arXiv:1203.0637 | Zbl 1317.53069
, , ,[10] Rolling manifolds: Intrinsic formulation and controllability, arXiv:1011.2925v2 (2011)
, ,[11] Controllability of rolling without twisting or slipping in higher dimensions, arXiv:1103.5258v2 (2011) | MR 2974746 | Zbl 1257.37042
,[12] Riemannian Holonomy Groups and Calibrated Geometry, Oxford University Press (2007) | MR 2292510 | Zbl 1200.53003
,[13] Rolling sphere problems on spaces of constant curvature, Math. Proc. Cambridge Philos. Soc. 144 (2008), 729-747 | MR 2418714 | Zbl 1147.49037
, ,[14] Foundations of Differential Geometry, vol. I, Wiley–Interscience (1996) | MR 1393941 | Zbl 0175.48504
, ,[15] Introduction to Smooth Manifolds, Grad. Texts in Math. vol. 218, Springer-Verlag, New York (2003) | MR 1930091
,[16] Rolling bodies with regular surface: Controllability theory and applications, IEEE Trans. Automat. Control 45 no. 9 (2000), 1586-1599 | MR 1791692 | Zbl 0986.70002
, ,[17] An intrinsic formulation of the rolling manifolds problem, arXiv:1008.1856 (2010) | Zbl 1261.37027
, , , ,[18] A geometric proof of the Berger Holonomy Theorem, Ann. of Math. 161 (2005), 579-588 | MR 2150392 | Zbl 1082.53048
,[19] Riemannian Geometry, Grad. Texts in Math. vol. 171, Springer-Verlag, New York (2006) | MR 2243772 | Zbl 1220.53002
,[20] Riemannian Geometry, Transl. Math. Monogr. vol. 149, American Mathematical Society, Providence, RI (1996) | MR 1390760
,[21] Differential Geometry: Cartanʼs Generalization of Kleinʼs Erlangen Program, Grad. Texts in Math. vol. 166, Springer-Verlag, New York (1997) | MR 1453120 | Zbl 0876.53001
,[22] On the transitivity of holonomy systems, Ann. of Math. (2) 76 no. 2 (1962), 213-234 | MR 148010 | Zbl 0106.15201
,