A mathematical formulation of the random phase approximation for crystals
Cancès, Eric ; Stoltz, Gabriel
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012), p. 887-925 / Harvested from Numdam

This works extends the recent study on the dielectric permittivity of crystals within the Hartree model [E. Cancès, M. Lewin, Arch. Ration. Mech. Anal. 197 (1) (2010) 139–177] to the time-dependent setting. In particular, we prove the existence and uniqueness of the nonlinear Hartree dynamics (also called the random phase approximation in the physics literature), in a suitable functional space allowing to describe a local defect embedded in a perfect crystal. We also give a rigorous mathematical definition of the microscopic frequency-dependent polarization matrix, and derive the macroscopic Maxwell–Gauss equation for insulating and semiconducting crystals, from a first order approximation of the nonlinear Hartree model, by means of homogenization arguments.

@article{AIHPC_2012__29_6_887_0,
     author = {Canc\`es, Eric and Stoltz, Gabriel},
     title = {A mathematical formulation of the random phase approximation for crystals},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {29},
     year = {2012},
     pages = {887-925},
     doi = {10.1016/j.anihpc.2012.05.004},
     mrnumber = {2995100},
     zbl = {1273.82073},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_6_887_0}
}
Cancès, Eric; Stoltz, Gabriel. A mathematical formulation of the random phase approximation for crystals. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 887-925. doi : 10.1016/j.anihpc.2012.05.004. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_6_887_0/

[1] S.L. Adler, Quantum theory of the dielectric constant in real solids, Phys. Rev. 126 no. 2 (1962), 413-420 | MR 139443 | Zbl 0108.44003

[2] A. Arnold, Self-consistent relaxation-time models in quantum mechanics, Commun. Partial Differ. Equ. 21 no. 3–4 (1996), 473-506 | MR 1387456 | Zbl 0849.35113

[3] C. Bardos, I. Catto, N. Mauser, S. Trabelsi, Setting and analysis of the multi-configuration time-dependent Hartree–Fock equations, Arch. Ration. Mech. Anal. 198 no. 1 (2010), 273-330 | MR 2679373 | Zbl 1229.35221

[4] E. Cancès, C. Le Bris, On the time-dependent Hartree–Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci. 9 (1999), 963-990 | MR 1710271 | Zbl 1011.81087

[5] E. Cancès, A. Deleurence, M. Lewin, A new approach to the modelling of local defects in crystals: the reduced Hartree–Fock case, Commun. Math. Phys. 281 (2008), 129-177 | MR 2403606 | Zbl 1157.82042

[6] E. Cancès, M. Lewin, The dielectric permittivity of crystals in the reduced Hartree–Fock approximation, Arch. Ration. Mech. Anal. 197 no. 1 (2010), 139-177 | MR 2646817 | Zbl 1197.82113

[7] J.M. Chadam, The time-dependent Hartree–Fock equations with Coulomb two-body interaction, Commun. Math. Phys. 46 (1976), 99-104 | MR 411439 | Zbl 0322.35043

[8] J.M. Chadam, R.T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys. 16 (1975), 1122-1130 | MR 413843 | Zbl 0299.35084

[9] S. Cuccagna, Dispersion for Schrödinger equation with periodic potential in 1D, Commun. Partial Differ. Equ. 33 no. 11 (2008), 2064-2095 | MR 2475330 | Zbl 1163.35032

[10] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Evolution Problems I, Springer (2000) | MR 969367

[11] W. E, J. Lu, X. Yang, Effective Maxwell equations from time-dependent density functional theory, Acta Math. Sin. 32 (2011), 339-368 | MR 2754040 | Zbl 1210.81030

[12] H. Ehrenreich, M.H. Cohen, Self-consistent field approach to the many-electron problem, Phys. Rev. 115 no. 4 (1959), 786-790 | MR 127287 | Zbl 0102.23801

[13] C. Hainzl, M. Lewin, E. Séré, Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation, Commun. Math. Phys. 257 (2005), 515-562 | MR 2164942 | Zbl 1115.81061

[14] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich (2008) | MR 2474331 | Zbl 1160.81001

[15] M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross (ed.), Time-Dependent Density Functional Theory, Lecture Notes in Physics vol. 706, Springer, Berlin (2006) | MR 2387299

[16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences vol. 44, Springer, New York (1983) | MR 710486 | Zbl 0516.47023

[17] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Fourier Analysis and Self-Adjointness, vol. II, Academic Press (1975) | Zbl 0308.47002

[18] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Analysis of Operators, vol. IV, Academic Press (1978) | MR 751959 | Zbl 0401.47001

[19] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Scattering Theory, vol. III, Academic Press (1979) | MR 529429 | Zbl 0405.47007

[20] E. Seiler, B. Simon, Bounds in the Yukawa2 quantum field theory: Upper bound on the pressure, Hamiltonian bound and linear lower bound, Commun. Math. Phys. 45 (1975), 99-114 | MR 413886

[21] B. Simon, Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series vol. 35, Cambridge University Press, Cambridge (1979) | MR 541149 | Zbl 0423.47001

[22] L.E. Thomas, Time dependent approach to scattering from impurities in a crystal, Commun. Math. Phys. 33 (1973), 335-343 | MR 334766

[23] N. Wiser, Dielectric constant with local field effects included, Phys. Rev. 129 no. 1 (1963), 62-69 | Zbl 0121.44901

[24] K. Yajima, Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys. 110 (1987), 415-426 | MR 891945 | Zbl 0638.35036