Regularity for solutions of nonlocal, nonsymmetric equations
Chang Lara, Héctor ; Dávila, Gonzalo
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012), p. 833-859 / Harvested from Numdam

We study the regularity for solutions of fully nonlinear integro differential equations with respect to nonsymmetric kernels. More precisely, we assume that our operator is elliptic with respect to a family of integro differential linear operators where the symmetric parts of the kernels have a fixed homogeneity σ and the skew symmetric parts have strictly smaller homogeneity τ. We prove a weak ABP estimate and C 1,α regularity. Our estimates remain uniform as we take σ2 and τ1 so that this extends the regularity theory for elliptic differential equations with dependence on the gradient.

@article{AIHPC_2012__29_6_833_0,
     author = {Chang Lara, H\'ector and D\'avila, Gonzalo},
     title = {Regularity for solutions of nonlocal, nonsymmetric equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {29},
     year = {2012},
     pages = {833-859},
     doi = {10.1016/j.anihpc.2012.04.006},
     mrnumber = {2995098},
     zbl = {1317.35278},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_6_833_0}
}
Chang Lara, Héctor; Dávila, Gonzalo. Regularity for solutions of nonlocal, nonsymmetric equations. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 833-859. doi : 10.1016/j.anihpc.2012.04.006. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_6_833_0/

[1] G. Barles, C. Imbert, Second-order elliptic integro differential equations: viscosity solutions theory revisited, Annales de lʼInstitut Henri Poincaré, Analyse Non Linéaire 3 (2008), 567-585 | Numdam | MR 2422079 | Zbl 1155.45004

[2] R.F. Bass, M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order, Communications in Partial Differential Equations 8 (2005), 1249-1259 | MR 2180302 | Zbl 1087.45004

[3] L. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications vol. 43, American Mathematical Society, Providence, RI (1995) | MR 1351007 | Zbl 0834.35002

[4] L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro differential equations, Communications on Pure and Applied Mathematics 5 (2009), 597-638 | MR 2494809 | Zbl 1170.45006

[5] L. Caffarelli, L. Silvestre, Regularity results for nonlocal equations by approximation, Archive for Rational Mechanics and Analysis 1 (2011), 59-88 | MR 2781586 | Zbl 1231.35284

[6] L. Caffarelli, L. Silvestre, The Evans–Krylov theorem for non local fully non linear equations, Annals of Mathematics 2 (2011), 1163-1187 | MR 2831115 | Zbl 1232.49043

[7] Y.C. Kim, K.A. Lee, Regularity results for fully nonlinear integro differential operators with nonsymmetric positive kernels, arXiv:1011.3565v2 [math.AP] | MR 2974279 | Zbl 1258.47064

[8] L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana University Mathematics Journal 3 (2006), 1155-1174 | MR 2244602 | Zbl 1101.45004

[9] H.M. Soner, Optimal control with state-space constraint II, SIAM Journal on Control and Optimization 6 (1986), 1110-1122 | MR 861089 | Zbl 0619.49013