Let and let be p-quasicontinuous. We find an optimal value of such that for a.e. the Hausdorff dimension of is at most α. We construct an example to show that the value of the optimal β does not increase once p goes below the critical case .
@article{AIHPC_2012__29_3_401_0, author = {Hencl, Stanislav and Honz\'\i k, Petr}, title = {Dimension of images of subspaces under Sobolev mappings}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {29}, year = {2012}, pages = {401-411}, doi = {10.1016/j.anihpc.2012.01.002}, zbl = {1245.28006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_3_401_0} }
Hencl, Stanislav; Honzík, Petr. Dimension of images of subspaces under Sobolev mappings. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 401-411. doi : 10.1016/j.anihpc.2012.01.002. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_3_401_0/
[1] Z.M. Balogh, R. Monti, J.T. Tyson, Frequency of Sobolev and quasiconformal dimension distortion, preprint, 2010.
[2] Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. 6 no. 2 (1973), 504-512 | Zbl 0258.30020
, ,[3] Sobolev spaces, dimension, and random series, Proc. Amer. Math. Soc. 128 no. 2 (2000), 427-431 | Zbl 0938.28001
,[4] Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics vol. 44, Cambridge University Press (1995)
,[5] Weakly Differentiable Functions, Graduate Texts in Mathematics vol. 120, Springer-Verlag (1989) | Zbl 0177.08006
,