On montre la radialité des minimiseurs de lʼénergie de Schrödinger–Poisson–Slater pourvu que et ρ est petit.
We study the radial symmetry of minimizers to the Schrödinger–Poisson–Slater (S–P–S) energy: provided that and ρ is small. The main result shows that minimizers are radially symmetric modulo suitable translation.
@article{AIHPC_2012__29_3_369_0, author = {Georgiev, Vladimir and Prinari, Francesca and Visciglia, Nicola}, title = {On the radiality of constrained minimizers to the Schr\"odinger--Poisson--Slater energy}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {29}, year = {2012}, pages = {369-376}, doi = {10.1016/j.anihpc.2011.12.001}, zbl = {1260.35204}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_3_369_0} }
Georgiev, Vladimir; Prinari, Francesca; Visciglia, Nicola. On the radiality of constrained minimizers to the Schrödinger–Poisson–Slater energy. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 369-376. doi : 10.1016/j.anihpc.2011.12.001. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_3_369_0/
[1] A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics vol. 34, Cambridge University Press, Cambridge (1995) | Zbl 0818.47059
, ,[2] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York (2011) | Zbl 1220.46002
,[3] The Thomas–Fermi–von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 no. 2 (1981), 167-180 | Zbl 0478.49035
, , ,[4] Stable standing waves for a class of nonlinear Schrödinger–Poisson equations, Z. Angew. Math. Phys. 62 (2011), 267-280 | Zbl 1339.35280
, ,[5] Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal. 261 (2011), 2486-2507 | Zbl 05978457
, ,[6] Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems, Comm. Partial Differential Equations 17 (1992), 1051-1110 | Zbl 0767.35065
, ,[7] Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561 | Zbl 0513.35007
, ,[8] Symmetry breaking and multiple solutions for a Neumann problem in an exterior domain, Proc. Royal Soc. Edinburgh 116A (1990), 327-339 | Zbl 0748.35012
, ,[9] Nonsymmetric ground states of symmetric variational problems, Comm. Pure and Appl. Math. 44 (1991), 259-274 | Zbl 0826.49002
,[10] Rupture de symétrie pour des problémes de Neumann sur-linéaires dans les ouverts extérieur, C. R. Acad. Sci. Sér. I 308 (1989), 281-286 | Zbl 0674.49008
,[11] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243 | Zbl 0425.35020
, , ,[12] Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal. 105 (1989), 243-266 | Zbl 0676.35032
,[13] Existence and uniqueness of the minimizing solution of Choquardʼs nonlinear equation, Stud. Appl. Math. 57 (1976/1977), 93-105
,[14] Analysis, Graduate Studies in Mathematics vol. 14, American Mathematical Society, Providence, RI (2001)
, ,[15] Symmetry of minimizers for some nonlocal variational problems, J. Funct. Anal. 254 (2008), 535-592 | Zbl 1128.49003
, ,[16] Long-time dynamics of the Schrödinger–Poisson–Slater system, J. Statist. Phys. 114 (2004), 179-204 | Zbl 1060.82039
, ,[17] A symmetry problem in potential theory, Arch. Ration. Mech. 43 (1971), 304-318 | Zbl 0222.31007
,[18] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472-491 | Zbl 0583.35028
,