For a one-phase free boundary problem involving a fractional Laplacian, we prove that “flat free boundaries” are . We recover the regularity results of Caffarelli for viscosity solutions of the classical Bernoulli-type free boundary problem with the standard Laplacian.
@article{AIHPC_2012__29_3_335_0,
author = {De Silva, D. and Roquejoffre, J.M.},
title = {Regularity in a one-phase free boundary problem for the fractional Laplacian},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
volume = {29},
year = {2012},
pages = {335-367},
doi = {10.1016/j.anihpc.2011.11.003},
zbl = {1251.35178},
language = {en},
url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_3_335_0}
}
De Silva, D.; Roquejoffre, J.M. Regularity in a one-phase free boundary problem for the fractional Laplacian. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 335-367. doi : 10.1016/j.anihpc.2011.11.003. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_3_335_0/
[1] , , Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144 | Zbl 0449.35105
[2] , A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are , Rev. Mat. Iberoam. 3 no. 2 (1987), 139-162 | Zbl 0676.35085
[3] , A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42 no. 1 (1989), 55-78 | Zbl 0676.35086
[4] , A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness, and dependence on X, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 15 no. 4 (1988), 583-602 | Numdam | Zbl 0702.35249
[5] , , Fully Nonlinear Elliptic Equations, Colloquium Publications vol. 43, Amer. Math. Soc., Providence, RI (1995) | Zbl 0834.35002
[6] , , , Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), 1111-1144 | Zbl 1248.53009
[7] , , , Variational problems with free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS) 12 (2010), 1151-1179 | Zbl 1221.35453
[8] , , A Geometric Approach to Free Boundary Problems, Grad. Stud. Math. vol. 68, Amer. Math. Soc., Providence, RI (2005) | Zbl 1083.35001
[9] , , , Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), 425-461 | Zbl 1148.35097
[10] , , An extension problem for the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260 | Zbl 1143.26002
[11] , , A singular energy minimising free boundary, J. Reine Angew. Math. 635 (2009), 1-21 | Zbl 1185.35050
[12] , Free boundary regularity for a problem with right hand side, Interfaces Free Bound. 13 (2011), 223-238 | Zbl 1219.35372
[13] , Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations 32 (2007), 557-578 | Zbl 1221.35154
[14] , Compactness methods for certain degenerate elliptic equations, J. Differential Equations 107 (1994), 341-350 | Zbl 0792.35067