Asymptotic analysis for surfaces with large constant mean curvature and free boundaries
Laurain, Paul
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012), p. 109-129 / Harvested from Numdam

We prove that simply connected H-surfaces with bounded area and free boundary in a domain necessarily concentrate at a critical point of the mean curvature of the boundary of this domain.

@article{AIHPC_2012__29_1_109_0,
     author = {Laurain, Paul},
     title = {Asymptotic analysis for surfaces with large constant mean curvature and free boundaries},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     volume = {29},
     year = {2012},
     pages = {109-129},
     doi = {10.1016/j.anihpc.2011.09.004},
     zbl = {1242.53009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_1_109_0}
}
Laurain, Paul. Asymptotic analysis for surfaces with large constant mean curvature and free boundaries. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 109-129. doi : 10.1016/j.anihpc.2011.09.004. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_1_109_0/

[1] Sami Baraket, Estimations of the best constant involving the L norm in Wenteʼs inequality, Ann. Fac. Sci. Toulouse Math. (6) 5 no. 3 (1996), 373-385 | Numdam | Zbl 0869.35032

[2] H. Brezis, J.-M. Coron, Convergence of solutions of H-systems or how to blow bubbles, Arch. Ration. Mech. Anal. 89 no. 1 (1985), 21-56 | Zbl 0584.49024

[3] Haïm Brezis, Jean-Michel Coron, Multiple solutions of H-systems and Rellichʼs conjecture, Comm. Pure Appl. Math. 37 no. 2 (1984), 149-187 | Zbl 0537.49022

[4] Isaac Chavel, Riemannian Geometry: A Modern Introduction, Cambridge Studies in Advanced Mathematics vol. 98, Cambridge University Press, Cambridge (2006) | Zbl 1099.53001

[5] Tobias H. Colding, William P. Minicozzi, Minimal Surfaces, Courant Lecture Notes in Mathematics vol. 4, New York University, Courant Institute of Mathematical Sciences, New York (1999) | Zbl 0987.49025

[6] Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, Ortwin Wohlrab, Minimal Surfaces. II: Boundary Regularity, Grundlehren der Mathematischen Wissenschaften vol. 296, Springer-Verlag, Berlin (1992) | Zbl 0777.53013

[7] Olivier Druet, Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Amer. Math. Soc. 130 no. 8 (2002), 2351-2361 | Zbl 1067.53026

[8] Olivier Druet, Emmanuel Hebey, Frédéric Robert, Blow-up Theory for Elliptic PDEs in Riemannian Geometry, Mathematical Notes vol. 45, Princeton University Press, Princeton, NJ (2004) | Zbl 1059.58017

[9] Mouhamed Moustapha Fall, Embedded disc-type surfaces with large constant mean curvature and free boundaries, preprint SISSA, 2007.

[10] Mouhamed Moustapha Fall, Area-minimizing regions with small volume in Riemannian manifolds with boundary, Pacific J. Math. 244 no. 2 (2010), 235-260 | Zbl 1186.53010

[11] Mouhamed Moustapha Fall, Fethi Mahmoudi, Hypersurfaces with free boundary and large constant mean curvature: Concentration along submanifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 no. 3 (2008), 407-446 | Numdam | Zbl 1171.53010

[12] Yuxin Ge, Estimations of the best constant involving the L 2 norm in Wenteʼs inequality and compact H-surfaces in Euclidean space, ESAIM Control Optim. Calc. Var. 3 (1998), 263-300 | Numdam | Zbl 0903.53003

[13] David Gilbarg, Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin (2001) | Zbl 1042.35002

[14] Heinz Hopf, Differential Geometry in the Large, Lecture Notes in Mathematics vol. 1000, Springer-Verlag, Berlin (1983) | Zbl 0526.53002

[15] Katsuei Kenmotsu, Surfaces with Constant Mean Curvature, Translations of Mathematical Monographs vol. 221, American Mathematical Society, Providence, RI (2003) | Zbl 1042.53001

[16] Nicholas J. Korevaar, Rob Kusner, Bruce Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 no. 2 (1989), 465-503 | Zbl 0726.53007

[17] Paul Laurain, Concentration of CMC surfaces in a Riemannian manifold, I.M.R.N., in press.

[18] Frank Morgan, Geometric Measure Theory: A Beginnerʼs Guide, Elsevier/Academic Press, Amsterdam (2009)

[19] Manuel Ritoré, Antonio Ros, Some updates on isoperimetric problems, Math. Intelligencer 24 no. 3 (2002), 9-14

[20] Antonio Ros, Enaldo Vergasta, Stability for hypersurfaces of constant mean curvature with free boundary, Geom. Dedicata 56 no. 1 (1995), 19-33 | Zbl 0912.53009

[21] Michael Struwe, Plateauʼs Problem and the Calculus of Variations, Mathematical Notes vol. 35, Princeton University Press, Princeton, NJ (1988) | Zbl 0694.49028

[22] Peter Topping, The optimal constant in Wenteʼs L estimate, Comment. Math. Helv. 72 no. 2 (1997), 316-328 | Zbl 0892.35030

[23] Henry C. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344 | Zbl 0181.11501

[24] Henry C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Ration. Mech. Anal. 75 no. 1 (1980/81), 59-77 | Zbl 0473.49029

[25] Ye Rugang, Foliation by constant mean curvature spheres, Pacific J. Math. 147 no. 2 (1991), 381-396 | Zbl 0722.53022