We prove that simply connected H-surfaces with bounded area and free boundary in a domain necessarily concentrate at a critical point of the mean curvature of the boundary of this domain.
@article{AIHPC_2012__29_1_109_0, author = {Laurain, Paul}, title = {Asymptotic analysis for surfaces with large constant mean curvature and free boundaries}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {29}, year = {2012}, pages = {109-129}, doi = {10.1016/j.anihpc.2011.09.004}, zbl = {1242.53009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2012__29_1_109_0} }
Laurain, Paul. Asymptotic analysis for surfaces with large constant mean curvature and free boundaries. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) pp. 109-129. doi : 10.1016/j.anihpc.2011.09.004. http://gdmltest.u-ga.fr/item/AIHPC_2012__29_1_109_0/
[1] Estimations of the best constant involving the norm in Wenteʼs inequality, Ann. Fac. Sci. Toulouse Math. (6) 5 no. 3 (1996), 373-385 | Numdam | Zbl 0869.35032
,[2] Convergence of solutions of H-systems or how to blow bubbles, Arch. Ration. Mech. Anal. 89 no. 1 (1985), 21-56 | Zbl 0584.49024
, ,[3] Multiple solutions of H-systems and Rellichʼs conjecture, Comm. Pure Appl. Math. 37 no. 2 (1984), 149-187 | Zbl 0537.49022
, ,[4] Riemannian Geometry: A Modern Introduction, Cambridge Studies in Advanced Mathematics vol. 98, Cambridge University Press, Cambridge (2006) | Zbl 1099.53001
,[5] Minimal Surfaces, Courant Lecture Notes in Mathematics vol. 4, New York University, Courant Institute of Mathematical Sciences, New York (1999) | Zbl 0987.49025
, ,[6] Minimal Surfaces. II: Boundary Regularity, Grundlehren der Mathematischen Wissenschaften vol. 296, Springer-Verlag, Berlin (1992) | Zbl 0777.53013
, , , ,[7] Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Amer. Math. Soc. 130 no. 8 (2002), 2351-2361 | Zbl 1067.53026
,[8] Blow-up Theory for Elliptic PDEs in Riemannian Geometry, Mathematical Notes vol. 45, Princeton University Press, Princeton, NJ (2004) | Zbl 1059.58017
, , ,[9] Mouhamed Moustapha Fall, Embedded disc-type surfaces with large constant mean curvature and free boundaries, preprint SISSA, 2007.
[10] Area-minimizing regions with small volume in Riemannian manifolds with boundary, Pacific J. Math. 244 no. 2 (2010), 235-260 | Zbl 1186.53010
,[11] Hypersurfaces with free boundary and large constant mean curvature: Concentration along submanifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 no. 3 (2008), 407-446 | Numdam | Zbl 1171.53010
, ,[12] Estimations of the best constant involving the norm in Wenteʼs inequality and compact H-surfaces in Euclidean space, ESAIM Control Optim. Calc. Var. 3 (1998), 263-300 | Numdam | Zbl 0903.53003
,[13] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin (2001) | Zbl 1042.35002
, ,[14] Differential Geometry in the Large, Lecture Notes in Mathematics vol. 1000, Springer-Verlag, Berlin (1983) | Zbl 0526.53002
,[15] Surfaces with Constant Mean Curvature, Translations of Mathematical Monographs vol. 221, American Mathematical Society, Providence, RI (2003) | Zbl 1042.53001
,[16] The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 no. 2 (1989), 465-503 | Zbl 0726.53007
, , ,[17] Paul Laurain, Concentration of CMC surfaces in a Riemannian manifold, I.M.R.N., in press.
[18] Geometric Measure Theory: A Beginnerʼs Guide, Elsevier/Academic Press, Amsterdam (2009)
,[19] Some updates on isoperimetric problems, Math. Intelligencer 24 no. 3 (2002), 9-14
, ,[20] Stability for hypersurfaces of constant mean curvature with free boundary, Geom. Dedicata 56 no. 1 (1995), 19-33 | Zbl 0912.53009
, ,[21] Plateauʼs Problem and the Calculus of Variations, Mathematical Notes vol. 35, Princeton University Press, Princeton, NJ (1988) | Zbl 0694.49028
,[22] The optimal constant in Wenteʼs estimate, Comment. Math. Helv. 72 no. 2 (1997), 316-328 | Zbl 0892.35030
,[23] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344 | Zbl 0181.11501
,[24] Large solutions to the volume constrained Plateau problem, Arch. Ration. Mech. Anal. 75 no. 1 (1980/81), 59-77 | Zbl 0473.49029
,[25] Foliation by constant mean curvature spheres, Pacific J. Math. 147 no. 2 (1991), 381-396 | Zbl 0722.53022
,