Nous démontrons que linéarisation et homogénéisation commutent à lʼidentité sous des hypothèses générales sur la densité dʼénergie élastique (à savoir indifférence matérielle, minimalité à lʼidentité, non-dégénérescence et existence dʼun développement quadratique à lʼidentité). Ceci généralise un résultat récent de S. Müller et du second auteur au cas non-périodique. En particulier, nous étendons au cas de lʼhomogénéisation stochastique leur diagramme de commutation de la linéarisation et de lʼhomogénéisation au sens de la Γ-convergence. Par ailleurs, nous démontrons que la Γ-fermeture est locale à lʼidentité pour la classe de densités dʼénergie non convexes considérée.
We prove under some general assumptions on elastic energy densities (namely, frame indifference, minimality at identity, non-degeneracy and existence of a quadratic expansion at identity) that homogenization and linearization commute at identity. This generalizes a recent result by S. Müller and the second author by dropping their assumption of periodicity. As a first application, we extend their Γ-convergence commutation diagram for linearization and homogenization to the stochastic setting under standard growth conditions. As a second application, we prove that the Γ-closure is local at identity for this class of energy densities.
@article{AIHPC_2011__28_6_941_0, author = {Gloria, Antoine and Neukamm, Stefan}, title = {Commutability of homogenization and linearization at identity in finite elasticity and applications}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, volume = {28}, year = {2011}, pages = {941-964}, doi = {10.1016/j.anihpc.2011.07.002}, mrnumber = {2859933}, zbl = {1256.35004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIHPC_2011__28_6_941_0} }
Gloria, Antoine; Neukamm, Stefan. Commutability of homogenization and linearization at identity in finite elasticity and applications. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) pp. 941-964. doi : 10.1016/j.anihpc.2011.07.002. http://gdmltest.u-ga.fr/item/AIHPC_2011__28_6_941_0/
[1] A variational approach to the local character of G-closure: the convex case, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 351-373 | Numdam | MR 2504034 | Zbl 1173.35012
, ,[2] Homogenization of Multiple Integrals, Oxford Lecture Ser. Math. Appl. vol. 12, Oxford University Press (1998) | MR 1684713 | Zbl 0911.49010
, ,[3] Homogenization of some almost periodic functionals, Rend. Accad. Naz. Sci. XL 103 (1985), 261-281
,[4] Integral functionals determined by their minima, Rend. Semin. Mat. Univ. 76 (1986), 255-267 | Numdam | MR 881574 | Zbl 0613.49028
, ,[5] Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math. 368 (1986), 28-42 | MR 850613 | Zbl 0582.60034
, ,[6] Linearized elasticity as Γ-limit of finite elasticity, Set-Valued Anal. 10 no. 12 (2002), 165-183 | MR 1926379 | Zbl 1009.74008
, , ,[7] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 no. 11 (2002), 1461-1506 | MR 1916989 | Zbl 1021.74024
, , ,[8] Stochastic diffeomorphisms and homogenization of multiple integrals, Appl. Math. Res. Express (2008) | MR 2412421 | Zbl 1156.60022
,[9] Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity, Arch. Ration. Mech. Anal. 122 (1993), 231-290 | MR 1219609 | Zbl 0801.73008
, , ,[10] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin (1994) | MR 1329546
, , ,[11] Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh Sect. A 99 no. 1–2 (1984), 71-87 | MR 781086 | Zbl 0564.73079
, ,[12] Stochastic homogenization of nonconvex integral functionals, RAIRO Modél. Math. Anal. Numér. 28 no. 3 (1994), 329-356 | Numdam | MR 1275348 | Zbl 0818.60029
, ,[13] On the commutability of homogenization and linearization in finite elasticity, Arch. Ration. Mech. Anal. 201 no. 2 (2011), 465-500 | MR 2820355 | Zbl 1262.74029
, ,[14] Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Ration. Mech. Anal. 99 (1987), 189-212 | MR 888450 | Zbl 0629.73009
,[15] S. Neukamm, Homogenization, linearization and dimension reduction in elasticity with variational methods, PhD thesis, Technische Universität München, 2010.
[16] On the local representation of G-closure, Arch. Ration. Mech. Anal. 158 (2001), 213-234 | MR 1842345 | Zbl 1123.35320
,[17] Higher integrability of the gradient in linear elasticity, Math. Ann. 299 no. 3 (1994), 435-448 | MR 1282226 | Zbl 0806.73009
, ,[18] Estimations fines de coefficients homogénéisés, (ed.), Ennio De Giorgi Colloquium, London, Res. Notes Math. vol. 125, Pitman (1985), 168-187 | MR 909716
,